Eccel....

N

9001
Embedded RFID made simple Cerificate No. GB200S225

OEM MICODE USB/RS232 TURBO
User Manual

Manual version: v1.0?

27/07/2021

Table of Contents
I 111 Yo 1F ot o T 7
1.1 DEVICE OVEIVIEW ..eeiiiiiiiieiiiiee ettt e ettt e e sttt e e sttt e e s s et e e s ss et e e s asa e e e s anbeee s nssee e s nsbeeesannbeeesansreeesannreeesaanrenesennrenes 7
b JN = [-Tot 4 g Tor- 1 I o =T ol =Y o Lo 1o YO RPNt 8
2.1 ADBSOIULE MAXIMUM FAINES . .uiiiiiiiiiie ittt e et e e e e e e s et e e e ssabaeeeesabeeeessabeaeeessseeeeessseeesesseeesennsees 8
3 A O T-Y i 1o Y- ole] o Vo L] d To 30U SPR 8
2.3 DC characteristics (Vop =5V, Ts = 25 “C) couiiiiiieeiieeeieeeite ettt e ectee e stte e s te e s staeesteestaeesataesbaeesasaesnsaeesseesnsseesnreean 8
2.4 Current coNSUMPLION (5V INPUL)...uuiiiiiiiiee ettt e st e e etee e e s et e e e e et e e e e e eabaeeeeeabaeeeeaabeeeeeanseeeeennsenas 8
K T 1= 4 41 V=3 7= =T« SRR 9
I S To T T o Je LY Yol 4 o) d o] o ISR 9
3.1.1 10 header deSCriPLiON (J2) ..cciiecciee e eiieeecieeeete e st e e eeeete e e tee e s teesbaeesaseesasaeesaeesnsaeesssessnsasansseesnsesanes 10
3.1.2 J1 header description (RS232 VEISION)uiiiicciiiieieciiee e e ettt ee e ettt e e e ettt e e e ette e e e sbteeeeeenteeeesstaeeesasseeaeannes 11
3 NV o 1ok | I ol o T o T=Tot o] o HS PPN 11
4. OEM Micode compatibility MOde........cceeueiiiimiiiiic et es s rean e s e reas e s eesassessennsseseennssessennssseennsnnns 12
4.1 AUXIlIAry Data OULPULeveeeiiiiee et ee et e s e e et e e e sata e e e eataeeesataeeesasaeeeeassaeeesssseeesssaeeesnnsseeeans 12
oy V| o N 24 o I = T Y oY T =Y U URURRRN 12
4.3 [CODE SLI TFanNSPONUEIS ..vveeeeeeeeieiiirreeeeeeeieeiirreeeeeeeessiissesseesessssssssssssesesssssssssssssesssssssssssssssesssmsssssssssesssssnssnnes 13
O N @ N e Y R T o 1Y o Yo o L= P URURRNE 13
4.5 MicroRWD MF-IC Modes Of OPEIratioNcciccuiiiiiiiiiie e ectee et e e ettt e e stre e e s re e e s satae e e ssneaeeeesntaeeessnnseeeans 13
4.6 SUPPOITEd tranSPONUEr TYPES.......eeiiiiieie ettt e e e e e e e e e e e et re e e e e e e eesabeaeeeeaeesassstesseeaeessaaasssenneeaseesnasrnns 14
4.6.1 MIFARE IMIOOE..... ittt sttt ettt et s e st st e b e b e s bt e sbe e s it e et e e b e e nbeesbeesanesanesaneereennes 14
o A (010 1T o W I 1Y, o Yo [T SO UPPPN 14
4.6.3 ISOLAAA3B IMIOUE...c.uteiuieueietieteete ettt sttt et e b et s e sat e st e bt e bt e s bt e s bt e s ae e et e e nbeesbeesbnesanesareeneenreennes 15
i YT E Y B [0 14=Y o - (ol T OO OO PO P PO TRS 15

! The newest User Manual can be found on our website: https://eccel.co.uk/wp-content/downloads/OEM user manual.pdf

1

https://eccel.co.uk/wp-content/downloads/OEM_user_manual.pdf

D &
Eccel....

Embedded RFID made simple

4.7.1 NO card present and NO host commands reCEIVEM.cccuuiieeiiiiieeiiiee ettt e e e saaee e 16
4.7.2 MIFARE/ICODE card in field, NO host commands received.coovurieiiiirieiiiieiee et 16
4.7.3 Host commands received and ProCeSSEA........cccuiiiiiiiiieieiiieeeeiieeeeecire e e e streeeesraeeessaaeeessbaeeesssaneeeas 16
4.7.4 Auxiliary output and BEEP delay timing (if options are enabled)cccoooveeevercenirieeeeeee, 18
4.8 Summary of Polling rates and command timMiNgcocciiiiiiiiiii e e e s aaee e 18
4.9 HOSE DIIVEI SOTEWAIE. .. ciiiiieetie ettt ettt ettt e e sb e e st e st e e e bt e e s bt e e s ab e e saseesabeeesabeesabeesnteesareeesanes 19
4.10 SWITCN 10 CL MG . ittt s b e st st st e b e bt e be e sb et sae e e aee et e et e e sbeesseesaeesaneeabeebeennes 20
4.11 Commands for MIFARE, ICODE and ISO14443B MOUESccceeeeeiuiiriieieeeeeeciiiteeeeeeeeeecintteeeeeeeeessnsssseeeeseeesnnnnnns 20
4.11.1 Card / LAbel STATUS ...ttt ettt sttt sa et bt et e bt e et et e s bt et e stesbe e besbeentenbesaeeneesneeneas 20
4.11.2 IMESSAGE REPOIT . e s s s e s s e e s e e e s e e e s s s e s e s e s e s e e s e e s e sesaaesesasasasasasesaananannnnns 20
4.11.3 Program EEPROM s s s e s e s e s e s e s e s e s e e e e e e e s e e e e e e e e e s e e e e e e eeeeeeeeeeeeaaaaanaasaaaaneennens 21
4.11.4 Internal EEPROM MEMOIY M@P .utttiiiiiiieeiiiieeeriiteeesitteeessssresessssesesssssesessssseessssssesssssssesessssssssssssssessns 21
A T = ot o] VA =TT TP T TP 23
4.11.6 Command Protocol (MIFARE MOTE)oeoiiieiiiiieiiee ettt ctee ettt e et te e e ta e e s be e s aae e sateesbaeesnreean 24
2 A o] TN (=) TP PP TR 24
4.11.8 Internal Key Storage memory map (default SETEINGS)ccceeevieeiiieeicii e 25
4.11.9 W Card BIOCK....c..eeeieeeee ettt sttt et she e shte st s bt b e b e ns 25
4.11. 10 REAA Card BIOCK....cccueeieeiiieiiieieeeeer ettt st ettt st s et r e e r e s re e st st n e e 26
4.11.11 Inc Value (only operates on Value Data StrUCTUIE)cocecuiiieeiiiiieeeciiee ettt eete e e vae e e e eaae e 27
4.11.12 Dec Value (only operates on Value Data StrUCLUIE)ccueeevieeeiieeeieeeeieecieeeireeeveeetreesereeseraeesaree s 28
4.11.13 Transfer Value (only operates on Value Data StrUCTUIE)ccccuieeeeciiiieeciiee et e 29
I T =T o L U 1 o TSSO PP PRSP 29
o I I o V7 o TN o 1= o o Tor= Y o [L PSR SP 30
4.11.16 Command ProtocCOl (ICODE SLIIMOTE)cccuvreieiiireieeeirieeeeireeeeeeteeeeeetreeeesareeeeeaneeesenseeesentreeeensneeeens 31
4.10.17 Wt LAD@I BIOCK. .. eieeiieeee ettt sttt she e sat e st s b e e b e sbeens 32
4.11.18 REAA LAl BIOCK. ..cutiiiiiieeeeeeee ettt sttt et sbe e sat e st e e b e b ns 32
o T R I o 1= I U 1 TSSO PP PRSP 33
4.11.20 Command Protocol (ISO14443B MOE)ceeeecuriieeeiiieeeeiieeeeeciteeeeeetteeeesteeeeesrseeesesseeasssseeesannseeanas 34
o 3 - T o L U 1 o TSP PP PRSP 34
4.11.22 Notes for Commands (MIFARE, ICODE, ISO14443B)ccccccuiieeeiieieeecieeeeeciteeeeecieeeeeeteeeesssaeeeeenneeaens 35
/0 A \V/ =1 d o ToTe e S @] oY=T =1 o o RSP 35
4.13 Basic RWD COMMUNICATIONeiiiiiiiiieieiieee ettt e e s e e s e e e s e e e e s mre e e e s amnneeesamnneeesannneeenan 36

E C C e I Technology Ltd
c

Embedded RFID made simple

N

4.14 Auxiliary Asynchronous SErial OULPUL........coiiiiiiiiecie ettt e e e e e e rara e e e s ata e e e entaeeeennnseeeean 38
5. C1 protocol compatibility MOdecccuuiiiiiiiiiiiiiiiiiiiiirrs e rseasssrssasssssesnsssstssssssssesesssssenens 39
5.1 OVRIVIBW .ottt sttt s a e e s a et e s st e e st e e s a e e e e a e e e s b et e s sera et e s sanee 39
5.2 Fram@ STIUCTUIE oottt e e e s s e et e e e e s e s bbb et e e e e s s s s esbbaeeesesesesannnnes 39
5.3 CRC CAICUIRTION ..ottt ettt b e sttt sttt e bt e s be e s st e s aee et e e b e e s beesmeesanesabeebeennes 40
L o0 A oT T 44144 = T T I L 42
6.1 GENEIIC COMMANGS ..ceutiiiiiiiiieteet ettt ettt et e bt e sbt e st e e bt et e sh e e sheesate st e e bt e bt e e beesaeesaseemseenbeenbeesaeesanesareenbeennes 42
6.1.1 Acknowledge frame (OX00)cc.eeecuieeiiieecieeesieeeieeesteesteeeseeeesteessaeesaseessaeessaeesnsasesssessnsasenssessnsesanns 42

Lo W A ¢ o] g ¢ Y 0T T o YT (0D ot ISRt 42
6.1.3 DUMMY COMMANA (OXOL) ..ccuuiieiiieiiieeiieeeieeeete e et e e teeesteeetreesteesbaeesaseesasaeesseesnsaeessseesnsaeensseesnsesanes 44

Lo I A 1=y o =T ol] U oL (00 7 IR U URRt 44
B6.1.5 GO TAG UID (0X03) ..vereoeeeeeeeeeereeeeeeeeeeeeseseeeseseeseeseseessesseseessessessasseesessaessseeseseseeeseseeesesseseessessessassessens 45
Lo I Yo V7= (I 7 G (000) ROt 46
.17 HAIE (OX05) ..o e eseseee s eeeee e seeseesseeeesseeseesasseesessaeseseeseseeeseseeeeeeeseeee et neeeseseeenens 47

Lo Yy) VA (0D 7 I USSRt 47
B.1.9 SAVE KEYS (OX08) ...veeeriieiureeeiiteeeieeeteeestteesteeesteesteeetaeesaseeeasseesssaeansasassseeansaeessaesnsaeesssessnsasansseessesanes 48

Lo I T Y=Y oo Yo A (0 (0 7L USSRt 48
6.1.11 Gt VEISION (OXOB)uveeieieirieeeiiiieeeetreeeeeitreeeeeetteeeeeetaeeeeeetreeeeeetbeeeesasseeeesasreeeesssseeeesasseseesasseseesnsreeessnses 48
6.1.12 Factory reset command (OXL11) ..ooceccuiiieiiiiieeceiee et e e ettt e e et e e e et e e e e ebteeeeebteeeeebeaeeeenseneeesnsraeeeannes 49

6.2 MIFARE ClassiCsS COMMANGS.......iiiiiiiiiiiitieteet ettt sttt ettt s e sae bt e b e bt e s b e e saeesan e et e e sbeesaeesanesanesareeneennes 50
(S R Y= To o] (oYl | (007X) Ut 50
6.2.2 WIILE DIOCK (OX21) ..euveueeiertietenieeitet ettt ettt sttt sttt b et s bt s bt e st e bt sat et e sbe et e sbeemt e besbeeneeaneeanes 50
(o T U= T RV = 1 V1 (00 2 Ut 51
6.2.4 WIIE VAIUE (OX23) . .eveeeieeireeeeetiieeeettee e ettt e eette e e eetae e e estreeeeetaeeeeetbaeeesetbaeeestseeeesessaseesasbaseesnsseeesnses 52
6.2.5 Increment/decrement Valu@ (OX24)c..eeccueeeeiee et eeteeeetee et eeteeeeve e eeteeeetaeeseteeeetteeeareeeeteeesareeenns 52
6.2.6 TranSTer VAlUE (OX25)...cccccuiieeeeciiiie ettt ettt eee e e e et e e e e e tte e e e ebteeeeebtaeeesbteeaeastaaeesstanaesnssenaeanes 53
6.2.7 RESTOIE VAIUE (OX26).uueiiiirreeiiiriiieiiieeeeeeeieeeeeetteeeeeeteeeeeetreeeeebaeeeesebaeeeesbreseessbtaeeesastaeeesnssesessnsreseesnses 54
6.2.8 Transfer-ReStOre ValUE (OX27)oo o uuii et eeettee e ettt e e ettt e e e eette e e e e tteeeeebteeaeebtaeeessseeassasseeaeannes 54

6.3 MIFARE UItralight COMMAaNdS........ooeiiiiiiee ettt ettt e e e et e e e e tte e e e sbte e e e sabtaeeesstaeeesntaeesannes 55
6.3.1 REAA PAZE (OXAD)ueiiee ittt ettt e e ettt e e ettt e e e e etteeeeebr e e e e e ttaeeeeabteeaeaattaeeeaabtaeaeeattaaaeaaataeaeaaaraeaeanes 55
6.3.2 WILE PABE (OXA 1) .eeiiiiiiiiie ettt eeieectee ettt e e te e ee e e s te e e taeesbeeeetaeesabeesbaeesaseesabaeeasaeessaeessseesnsasensseessesanes 56
6.3.3 GEEVEISION (OXA2) c.nuriiieeitiieeeeetieeeeecite e e e ettt e e e ettt e e eeetteeeeebaeeaeeattaeeeeaseeeaeastaaaeassseaesastasaesassanassassesaesses 56

E C C e I Technology Ltd
c

N

Embedded RFID made simple

6.4

6.3.4 Read SiZNATUIE (OXA3)..ciiiiiieeeeeiiiee et e e e ettt e e e ette e e e ette e e e sbteeeeebteeesebteeeesstaeeeastaeeeanstaaessstasessasseeessnes 57
6.3.5 WIite SIZNATUIE (OXA4)eeeeeeeeeeiee ettt ecte e et e et e e e e e s te e e taeessteessaeessseesasaeesaeesnsasesssessnsasaseeessenanes 57
6.3.6 LOCK SIZNATUIE (OXA5) .oeiierieeeieitiee ettt e ettt e ettt e e e ette e e e et e e e e e bteeesebteeeeenstaaeesnstaeeesnstaaessstaeessasseeesanes 58
(o T A 1= 1o [olo 18) =T gl (0T) IS 58
6.3.8 INCremMENt COUNTEE (OXA7) cooourrreeieeeeeeeeiiteeeee e e e eeeeter e e e e e eeeebbereeeeeeeeeebaaereeeeesesasbasarereeeeesssssessreseessaans 59
6.3.9 PaSSWOIA QULN (OXA8) ...cueeeeceieeciie et et e et e e st e st e e taeesateeeaeeesateessaeesaseesnsaeesaeesnseeesssessnsasanseesssenanns 59
6.3.10 Ultralight-C authenticate (OX49).....ccuuieiieiiie ettt e e et e e e ette e e e s bte e e e sbteeeeebaeeesssrneeesnnes 60
6.3.11 Check Tearing EVENT (OXAA)....cccuieiiieeiieeecieeesteeeieeestteesteeesteeesteessaeesnseesnsaeesseesnsesessseesssasenseessnsesanes 60
MIFARE DESIre COMMEANGSueiiiiiiiiieeeet ettt sttt et e s bt e sat e st e et e bt e b e e beesmeeemeeeaeeeneean 61
6.4.1 GELVEISION (OX60) ..cccvviecreeeiiieeeiie it esteeeiteeesteesteeestaeesteeeasseessseeasasessseeansaeaasseessseesssessnsasansseesnsesanes 61
(o Sy Y=Y [Tt = o] o] o= Y To T o I (0) SRRt 61
6.4.3 List apPliCAtion IDS (OX62)eeeeveeiirieeirieeireeesieesiteeesteeesiseeessseesseessaeessseessaeessssssnsesasssessssesanssessnsesanns 62
(o A T o 41 [R (0) USSRt 62
6.4.5 AULNENTICATE (OXB4)....oiiiieeeitieeeiie ettt ettt e et e e ete e st e e taeesteeeatseesteeesaeesaseesasaeasaeesnsaeessseesssasenseeessesanes 63
6.4.6 AULNENTICALE ISO (OXB5) ...uveeeieriieeieitieeeeeiteeeeeitteeeeeitteeeeetteeeeetteeeseasteeeeastaeeeaassseeeaastssessassenessnsesessnnes 63
6.4.7 AULNENTICATE AES (OXB66)....ccveieerieiiieeiieeecteeeeteeeteeesteeesteeesteeestteesbaeessseesasaeesaeessaeesssessnsasensseessesanes 64
6.4.8 Create apPliCatioN (OX67)cecccireeeecieeeeeiieeeeecte e e e eette e e e eetteeeeebteeesebteeeeestaeeesstaeeeastaaeeaastasaesasseeeeanses 64
6.4.9 Delete apPliCation (OXB8)c.eeecveeiiiieeiieeecieeeeiteesiteeestteesteeesteeesteessbaeesseeesaeessseessasessseesssasensseessesanes 65
6.4.10 Change KEY (OX69)uueieieriieeeeitiiee ettt e e ettt e e e ettt e e eetteeeeebteeeeebteeeeeseeeaeastaseeassseaesastaseesassasassassenesases 65
6.4.11 Get KeY SETEINGS (OXOA).....ieecriieiiieiiie et eecieeeete e st e e teeesteeesteeesbeesbaeesaseeeasaeeasseesnsaeesssessssasensseessesanes 65
6.4.12 Change Key SEEINGS (OXBB)ueieieiiiiieieiiiieeeeiieeeeectee e e ettt e e e ettt e e eetteeeeebteeeessteeeeaseaeeesssasassnssesasanes 66
6.4.13 Create standard or backup data file (OXBC)........cccueeeiriierieeiiieecieeectte e eteeerre e eere e e s e e e beeeeaaeesbaeenes 66
Lo T oy =X o1 = T (0)(] 0) Ut 67
6.4.15 REAA dAa (OXBE) ...ccuvveeiieiiieieeiieee ettt eetre ettt eetee e e eetr e e e e e treeeeeetbaeeesetbeeeesebbaeeeseabaeeesatraeeesntraeeeetes 67
6.4.16 Create ValUe file (OXBF).......cee i ciiee ettt ettt eeette e e e et e e e e e tte e e e ebteeeeebteeeesbtseeeastsaeesstaeesenssenasanes 68
Lo A Ty Y=Y [V =3 (01070) I USRSt 69
6.4.18 Credit file (OX7 L) .eceereeiesterteeteete ettt sttt ettt sh et s bt et e st s bt et s bt e st e bt sat et e ebe et e sbeeab e besbe et e ebeeanes 69
6.4.19 Limited Credit fil@ (OX72) ..uueeeeiciiee ettt ettt e et e e e et e e e e e bt e e e e ebteeeeebteeeeestseeesssaeaesassaeaesnes 69
6.4.20 DDt file (OX73) eeeueertiruieierteeieste ettt ettt ettt ettt sh et b ettt b et bt e a b bt sat et e sh e et e nheehe et sheente bt eanes 70
6.4.21 Create reCord fill@ (OXT74).... ettt e et e e e ettt e e e et e e e e e tbee e e ebteeeesbtaeaesssseaesassaeaesnssaeaeanes 70
6.4.22 WL FECOIA (OX75) cuvvreiiitiieeeeitiieeeeeteeeeeeetee e e eeetteeeeetaeeeeebeeeeeebaeeeesabeeeeesnbreseesssteeeesastasessasseseesnsseeessnses 71
6.4.23 REAA IECONI (OX76) .uvrieeeetiieeeeitiieeeeittee e e ettt e e ettt e e eeetteeeeeitteeeeeastaeeaaassaeaeaassaeaeassseaesassasaesassanaesassesassses 72

E C C e I Technology Ltd
c

N

Embedded RFID made simple

6.5

6.4.24 ClEAr IECOIUS (OXT77) wueeeieiiiiiiitireeeeeeeeeeeitteee et e e eeeettereeeeeeeeessabbaaeeeeeeesassssresereeeeessssrasaessesesessssreasreseessnans 72
(o N A I 0 Lo 1oy L 1T (0D 2 IS 72
6.4.26 Get fre€ MEMOIY (OX79)uiii e ieciieee ettt e et e e ete e e e ette e e eebaeeeeebteeeeestaeeesstaeeessenseesastaeessassaeesannes 73
6.4.27 FOrmat MEMOIY (OXT7A) c.ueieeceieeeiie it et e ectee e st e st e e tae e s teeeseeessseeasasessseesssaeasaeesnsesessseesnsasenssessnsenanes 73
6.4.28 CommMIt tranSACLION (OXT7B) ...uvuveeeeiieiiiiiiireeeeeeeieeiitereeeeeeeeeeetreeeeeeeeeeesssbbereeeeeeeessraseeeseeesessssrrsnneseessnans 74
(SRS I oI\ o Yoo i =Yg T Lot [T o I (0074 O PSS 74
ICODE (ISO15693) COMIMEANGS ...ccoeiiiirireeieeieiiiiiteeeeee et eeeeiirereeeeeeeessisarereeeeeesssssssaesereseesesssseseesseeeseenssrrsseeseesennns 75
[T A o V=T o oY YA = [(05 L0) RSN 75
(o T A 10N VZ-Y oY o] AV o T A (07 1) Ut 75
6.5.3 SEAY QUIET (0X92)..vrereeeeeeeeeeeeeeeeeeeeeeeeseseeeeeseeeseeeseseessesseeessessessasseesessaessseeseseseeeseseeesesseeeessessessessesnens 76
(o T A Y= To o] o Yol [(0 1) ISRt 76
6.5.5 WIILE DIOCK (OX94) ...ttt ettt ettt e e st e et e e s te e s bae e sateesataeebaeesnbaeessseesnsaeeseeesnseeanns 77
(o T ST o Yol o) (o ol (00451 ROt 78
B.5.7 WITEE AFT (OX96)...erveeeeeeeeeeeeseeeeeeeeeeeeeeeseseseeesesessesseseessesseseessessessassessessasssseesessseseseseeseessessesseseessessessens 78
TR T Mo ol @ (0 7 OO OSPRRPR 78
6.5.9 WIILE DSFID (OX98)vvieeuieeeitiieeiie it esiteeeteeesteestee e taeesateeesseesssaeaasaeessseesnsaeesaeesnsaeesssessnsasansseessesanes 79
6.5.10 LOCK DSFID (0X99) ...cutteuietertteiesteetente et ettt et e s te et ebeshe et e sbe et e stesat e besbeeae e besaeetesaeentesbeentebesaeeneesaeeneas 79
6.5.11 Get System INFOrmation (OXGA)......cueeiiie e cee et ece et e e s re e e rteeesreesbaeessbeesbaeessseesareeeseeesseeanes 80
6.5.12 Get MUILIPIE BSS (OXIB).....ueieieiiieeieiieee ettt e ettt e e e ette e e e ett e e e eetaeeesebteeaeebtaeeesbtaeaeastseaesstanaesassenasanes 80
6.5.13 PasSWOrd ProteCt AFI (OX9C) ..cccvieiirieeiieeecieeeeieeeieeertee e st e esteeesteeesbaeesaseessaeesseesasaeessseesssaesnsseessesanes 81
(o T I A Y=F: To J L L O (0D 0) Ut 81
6.5.15 Get NXP System INformation (OXE)........ccceeeiieeiirieeiieeeieeecte e st e esteeesveeetaeestaeesbaeestreesareeenaeesaraeenns 81
6.5.16 Get random NUMDBEE (OXOF).......ooi it e ettt e e e et e e e e e bt e e e e ebteeeesbteeeesseeeeesseaaaesnssenaeannes 82
6.5.17 Set PASSWOIT (OXAD)eciieeectieeeiie ettt eeteeeeteeeeteesree e taeesteeestseesseeesasesaseesnsaeeasaeesnsasesssessnsasensseessesanes 82
6.5.18 WIrite PASSWOI (OXAL)uiiieiiiiiieieiiee e e ettt e e ette e e eette e e e eteeeeeebaeeeeebseeeeastaeeeasseeeeasesaessassanassassenasanes 83
6.5.19 LOCK PASSWOIA (OXA2) ... netieieeeiiiee ettt e eeitt et e eectte e e e etteeeesbteeeeebteeeesseseaeastaaeessseeasassasessastasassassenasases 84
6.5.20 ProteCt PAZE (OXA3B).cuvieeiieeeirieeeree et eeteeeiteeeeteesteeestaeesbeeessseesseessaeesasaesasaeeasaeessseessseesrasensseesreeanns 84
6.5.21 Lock page ProteCtion (OXAZ)ooccccuiiieieiiie e et e ettt e e ettt e e e et e e e e ettee e e ebteeeeebtaeaeestseaeesseeaesasraeaeanes 85
6.5.22 Get multiple block protection Status (OXASD)cccueeeiieeriieeeiieeeieeeiteeeereeerteeesaeeeereeestreeereeessseesreeenns 85
6.5.23 DESTIOY (OXAB) ..reeeeiiuriieeietieeeeeitieeeeeitteeeeeitteeeeetteeeeeteeeaeaasseeaeaassaaeeaassasaeassaaaeassseaeassssaeassaaaeanssseasanses 86
6.5.24 ENADIE PrIVACY (OXAT) eeeiireeeirieeetee ettt e et e ee vt e stee e taeesteeesteeestbeeebaeesaseesabaeesaeessesesssessnsasensseessesanns 86
6.5.25 Enable 64-bit PaSSWOIA (OXASB)......cccuuiieeiiiiiieeecieeeeecteeeeeetteeeeeetteeeeeetteeaeeetteeeesssseeaeaasssseesassneassassesessnses 87

\\\ ‘:.f‘v e <) 1
Eccel .. %

Embedded RFID made simple

6.5.26 Read SiZNAtUre (OXA9D) ..cccuiieeieiiiee ettt e et e e et e e e ette e e e ett e e e setaeeeeebteeeeabtaeeeenstaeeeansesaessstaeessasteeeeane 87

(SR T A 1= 1o [oo o = (017 Y L PSS 88

6.5.28 WIit€ CONTIG (OXAB) ..vveeeiiiieeeieiieee ettt e ettt e et e e e et e e e e ett e e e s ebteeeeebteeeesnstaeeeanstaeeesstaaessstaeessnsseeesanes 88

6.5.29 PicK random ID (OXAC)ceecuieeereeiiieesteeecteeesteesteeestaeesteesseeessseeasasesnseesnsaeessessnsesesssessnsasanssessnsesanes 89

o I O I N U] 7= =T LTSRNt 89
6.6.1 OTA DEGIN (OXFO) ovreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseseeeseseeeeeseeeseseasseeseeseesesessesesseseseeesesseseeeseseassesseneens 89

6.6.2 OTA FIrmWAre frame (OXFL) ...uuuuee ettt e e e e eeebr e e e e e eeeesabaseeeeeeeeessssaseeeseeseanns 89

6.6.3 OTA FINIS (OXF2) evreeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeee e eee s e ee s e e s s e sseeseeeeesssee s eseeseseeeseseeeeeeseseessessasnans 90

N\, C=Tel s T T o= T e 1144 =T L o T N 91

N
Eccel....

Embedded RFID made simple

1. Introduction

1.1 Device Overview

Features

e |ow cost RFID Reader with MIFARE®
Classic® in 1K, 4K memory, ICODE,
MIFARE Ultralight®, MIFARE DESFire®
EV1/EV2, MIFARE Plus® support

e Pin to pin compatible with OEM-
MICODE Reader v1

e Simple command interface via UART

e User selectable Eccel Pepper C1
protocol and RFID functionality

e Stand-alone mode (polling)

e High transponder read and write
speed

e -25°Cto 85°C operating range

e Multiple internal reference voltages

e lifetime updates

e RoHS compliant

e Programmable “BEEP” output for
external control

e Wiegand protocol is not available on
this hardware

Applications

e Access control

e Monitoring goods

e Approval and monitoring
consumables

e Pre-payment systems

e Managing resources

e Contact-less data storage systems

e Evaluation and development of
RFID systems

Description

The OEM MICODE TURBO reader is a new generation OEM
MICODE product. Most of the features of the old OEM MICODE
products are supported, but also included are most of the RFID
features of the Pepper C1 range, which gives much better RFID
performance.

So, this is an ideal design choice for replacing old products, with a
migration option to our new Pepper C1 interface. With the C1
binary interface you can read/write most of the tags available on
the market not only read their UID like on the old MICODE
products.

The new devices support firmware updates, so all new features
requested by users or bug fixes can be uploaded to the module
later.

By default, the new reader works the same as old OEM MICODE
readers, with built in polling mode, UID output over serial
connection, programmable “BEEP” output for external control.
What is more, new products have the option to change baud rate
from 9600 to 115200 in RWD MICODE compatibility mode.

\\\ 3
Eccel... “:

Embedded RFID made simple

2. Electrical specification

2.1 Absolute maximum ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device.
These are stress ratings only, and do not refer to the functional operation of the device that should follow the
recommended operating conditions.

Symbol Parameter Min Max Unit
Ts Storage temperature -40 +125 °C
Ta Ambient temperature -40 +85 °C
Vbomax Supply voltage (USB or J1 header on RS232) 5 5.5 \Y
Table 2-1. Absolute maximum ratings
2.2 Operating conditions
Symbol Parameter Min Typ Max Unit
Ts Operating temperature -25 25 +85 °C
H Humidity 5 60 95 %
Voo Supply voltage (USB or J1 header on RS232) 5 5 5.5 \Y
Table 2-2. Operating conditions
2.3 DC characteristics (Voo =5V, Ts = 25 °C)
Symbol Parameter Min Typ Max Unit
Viu High-level input voltage TTL 0.75 x Vour - Vour + 0.3 Vv
Vi Low-level input voltage (IO header) 0 - 03xVour | V
Vou High-level output voltage (I0 header) 0.8 x Vour - - \Y
Vou Low-level output voltage (I0 header) - - 03xVour | V
Vors232 V output R$232 (RS232_TX pin) - 5 - Vv
Virs232 Vinput RS232 (RS232_RX pin) -25 - +25 Vv
Table 2-3. DC characteristics
2.4 Current consumption (5V input)
Current Typ Max Unit
RF field off 35 45 mA
RF field on 150 200 mA
Average current with default polling settings 50 - mA

Table 2-4. Current consumption

Eccel.... .

Embedded RFID made simple

3. Getting started

3.1 Board description

RFID antenna

OEM-MICODE USB

LEDs

10 header

OEM-MICODE RS-232

J1 RS232 header

Figure 2. OEM MICODE RS232 TURBO version

3.1.1 10 header description (J2)

This header is available on both USB and RS232 versions.

=
- O
m
O o¢c
OO o N
-1 [y -
SR - R R
lo]Jo]o]o]o]o]
lo]Jo]o]o]o]o]
() I I T) - = - =
Z<Hz2xX49
o w)
Pin Name DIP No. | 1I/O Type | Buffer Type Description
GND 1 P - Ground reference for logic and analogue pins.
OPO 2 0] TTL Auxiliary output drive. 25ma max sink current.
VCC 3 P - +5v Positive supply
LED1 4 0] TTL Red LED connection. 25ma max sink current
TS 5 0 L Serial commur.\ication CTS har\dshake. RX enabled when
CTS low and disabled when high.
OP1 6 I - Internal pull up. To switch to C1 mode connect to GND.
GND 7 P - Ground reference for logic and analogue pins.
LED2 8 0] TTL Green LED connection. 25ma max sink current
Serial communication Receive line. 9600 baud, 8 bit, 1
RX 9 | TTL .
stop, no parity
BEEP 10 0] TTL BEEP output pin (active LOW), 25ma max sink current
RESET 11 | ST Reset pin internally pulled high. Active low. Normally not
connected
TX 12 0] TTL Serial communication Transmit line

10

3.1.2 J1 header description (R$232 version)

GND|©
5Vin|©O
RS232CTS |©
RS232RX | O
RS232Tx |©
Pin Name DIP No. 1/0 Type Voltage range Description
GND 1 P - Ground reference for logic and analogue pins.
VCC 2 P 5V +5v Positive supply

Serial communication CTS handshake. RX enabled

CTS 3 0 -5V —+5V

when CTS low and disabled when high.
RX 4 | -13V —+13V Serial communication Receive line.
TX 5 0] -5V —+5V Serial communication Transmit line

3.2 Typical connection

The OEM-Micode USB device can be connected to a host computer using a standard USB B cable. In the same way it
can be powered to operate as a standalone device by using power sources such as a USB charger or power bank.

The RS232 version should be powered using an external power supply with 5V output with minimum 200mA, but
recommended is 500mA.

The computer operating system should recognize this device as a USB to TTL bridge or a USB to Serial port converter
and it should appear in Windows device manager as a COM port. By default this COM port can be used for
communication using the binary protocol described below. The default configuration: baud: 9600, Data: 8 bit, Parity:
none, Stop bits: 1 bit, Flow Control: none. In C1 mode the reader uses always 115200 baud.

11

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

4. OEM Micode compatibility mode

By default the reader works in the same way as version 1.0 modules and readers. So, communication, AUX output and
BUZZER output work exactly the same as in our old Micode products except the Wiegand protocol — it is removed on
this hardware. Also OP1 pin is now an input (pulled up internally). Pull down by the user forces the reader to works
in C1 mode.

4.1 Auxiliary Data Output

The reader uses the 4-byte UID (serial number) or the least significant (first) 4bytes of data from
MIFARE/ICODE/ISO14443B (Calypso) card memory block to create a 32bit data frame. The data frame can then be
output as asynchronous 9600 baud serial data on OPO pin.

An RWD EEPROM parameter can redirect the serial auxiliary output on OPO (pin 20) to the main TX output (pin 23).
This allows both bi-directional command/data communication and the automatic auxiliary serial data output with
the same 3-wire RS232 interface.

Note that when the auxiliary serial output has been redirected to TX pin, there will be NO acknowledgement or data
response to commands (to avoid confusion of data).

For normal command and data response, the serial auxiliary output MUST be directed to the OPO pin or turned OFF.

The “BEEP” output signal delay, data source, byte order and Hex/ASCII format for the auxiliary output and the various
options are all controlled by programmable RWD EEPROM parameters.

The MicroRWD can be used in standalone mode and automatically output blocks of data (such as the UID) WITHOUT
any commands being sent to the module. In addition, the “Green” LED output or the BEEP output can be used as a
control signal to “interrupt” the host computer or microcontroller just before the automatic data is transmitted.

NOTE that the “BEEP” output (RWD pin 4) idles in a high state and “sinks” current. External loads can be connected
between 5-volt supply and pin 4 with a series resistor to ensure “sink” current does not exceed 25mA.

Note that setting Polling rate parameter to minimum value (0x00) means the polling rate is always as fast as possible
and does not change.

4.2 MIFARE Transponders
The MIFARE transponders are available with 64 bytes (MIFARE Ultralight), 1024 bytes (MIFARE 1K) and 4096 bytes
(MIFARE 4K) of memory and the 13.56 MHz carrier frequency provides fast transaction times of 106 kbaud.

For the 1k and 4k cards the memory is organised as 16 and 40 Sectors respectively, each Sector has 4 x 16-byte Blocks
of memory (3 of which are available for general Read/Write use). Each Sector can be separately locked/unlocked for
access using security keys.

Initial communication with the cards can only proceed after mutual authentication between the RWD and the card has
succeeded (as defined by ISO 14443A standard). Combined with the “Security Key” access control for the memory

12

sectors and encrypted data streams, the MIFARE cards are ideally suited to Electronic-Purse applications such as
ticketing and vending applications where each sector can hold entirely separate data for different applications.

Note: Some 1SO14443A compliant cards have a SINGLE (4-byte) UID and others have a DOUBLE (7-byte) UID. These
serial numbers are acquired as part of the initial anticollision / select procedure when a card is brought into the RF
field. This UID information can be reported using the CARD UID command (or automatically output via auxiliary OP
pins). The correct security keycodes will be required for subsequent card read/write operations.

This means that the MIFARE UID/serial number is always readable even if correct keycodes are not known. For many
applications, UID/serial number information is all that is required.

4.3 ICODE SLI Transponders

The ICODE SLI (and Tag-it HF-I) transponders support the ISO15693 standard and have 128 bytes of memory organised
as 4-byte blocks (UID/serial number is 8-bytes long). Fast communication times of up to 52kbaud and the low cost of
these transponders has allowed their use for asset tracking applications.

4.4 |SO14443B Transponders

The 1SO14443B transponders (such as Calypso Rev2 types) are supported for serial number acquisition only.
Communication with the card is according to 1SO14443B specification at 106kbaud rate. The REQB/ATQB response
contains the UID information that is stored and can be accessed using the CARD UID command or the automatic serial
number output feature.

4.5 MicroRWD MF-IC modes of operation

The Micro RWD has two basic modes of operation:-

RWD reader RWD reader Standalone mode with
Internal EEPROM holding
—> authorised serial

HOST numbers for acceptance

A

Remote mode (connected to a host computer or microcontroller) and Standalone mode.

1) Remote mode involves connecting to a host serial interface. This is where the stored list of authorised identity
codes (serial numbers) can be empty, effectively authorising any MIFARE/ICODE/ISO14443B card for subsequent
read/write operations (depending on correct Security Key in MIFARE case). The simple command protocol allows a

13

2)

host system to communicate with the Micro RWD in order to program new authorised identity codes, change
parameters, load Security Keys and perform Read/Write operations to the card itself.

Standalone mode is where the MIFARE/ICODE/1SO14443B card identity codes (serial numbers) are checked against
a stored list of authorised codes. If an identity code is matched, the Green LED and auxiliary outputs are enabled.
Effectively standalone mode occurs when there is no host system communicating with the Micro RWD. Up to 60
serial numbers can be stored in the authorisation list so this mode of operation can be used to create a “mini access
control” system.

4.6 Supported transponder types

4.6.1 MIFARE Mode

Selected by RWD EEPROM parameter byte 3 set to 0x00 (factory default setting)

Note that MIFARE cards and transponder devices are made by several companies under licence from Philips/NXP
Semiconductors. They are fully MIFARE compliant and only differ in having different manufacturers information in
memory Block O :

1)
2)
3)
4)

5)

MIFARE standard 1k card (MF1 IC S50 transponder) and equivalent.

MIFARE standard 4k card (MF1 IC S70 transponder) and equivalent.

MIFARE Ultralight card (MFO IC U1 transponder).

MIFARE ProX, Smart MX (JCOP) dual-interface card types are supported to allow single or double UID to be
acquired and “MIFARE” operations performed across the contactless interface. DESFire, MIFARE PLUS supported
for serial number acquisition.

Any ISO 14443 A compliant contactless card can be accessed for Serial Number acquisition. Full Read/Write access
will only be possible if card fully supports Philips/NXP Semiconductors CRYPTO1 algorithm and encrypted data
protocols.

The operation of the MicroRWD MF-IC and the MIFARE transponders is described in more detail at the end of this
document.

The “ident codes” described in this text are regarded as the four byte (SINGLE) MIFARE UID (Unique Identifier/serial
number) or the least significant four bytes of the seven byte (DOUBLE) Ultralight UID.

4.6.2 ICODE SLI Mode

Selected by RWD EEPROM parameter byte 3 set to 0x01.

14

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

Note that ICODE SLI labels are designed to comply with the ISO15693 standard. Other ISO15693 smart labels may have
proprietary features such as different memory sizes and subsets of the ISO15693 command protocol. MicroRWD MF-
IC has been designed to work with the most common “mandatory” ISO15693 commands as supported on ICODE.

1) ICODE SLI (IS015693) smart labels (Philips/NXP Semiconductors SL2 1CS20)

2) Any 15015693 smart label that supports the core 1ISO15693 command set and has the same memory structure and
configuration bytes as the ICODE SLI type (including Texas Instruments Tag-it HF-I)

The ICODE identity code is defined as the least significant four bytes of the 8-byte UID, (effectively UIDO - UID3). Note
that The UID used for the "Ident list" check is the first tag UID acquired when there are multiple tags in the field (first
tag in INVENTORY list).

4.6.3 15S014443B Mode

Selected by RWD EEPROM parameter byte 3 set to 0x02.
ISO14443B card types are supported for serial number acquisition only.

1) Calypso Rev 2 card types.

2) Any 1S014443B card type supporting REQB/ATQB command/response protocol at 106kbaud
communication rate.

IMPORTANT NOTE: DUE TO DIFFERENCES IN THE RF CHARACTERISTICS OF MIFARE, ICODE AND 15S014443B CARDS,
THE ANTENNA TUNING MAY NEED ADJUSTING TO THE BEST COMPROMISE FOR OPERATION WITH ALL TYPES.

4.7 Serial Interface

This is a basic implementation of RS232. The Micro RWD does not support buffered interrupt driven input so it must
control a BUSY (CTS) line to inhibit communications from the host when it is fully occupied with card communication.
It is assumed that the host (such as a PC) can buffer received data. This CTS signal must be connected to the host
computer communication port to allow “hardware handshaking” or the host driver software must check the CTS signal
and only send commands/data when it is in a LOW state. The CTS signal is pulsed LOW for a 6ms period each polling
cycle. The host computer must wait for this LOW signal and then send the command and data.

The CTS line remains in a LOW state while the command and data bytes are being received. After the last byte of data,
the CTS signal “times out” for 6ms and returns HIGH.

This 6ms “window” every polling cycle allows the host computer to send a single command and associated data to the
RWD. Please note that only one command and it’s corresponding parameter bytes can be sent during a CTS LOW
period, the command and data bytes must be sent with no gaps between, if there is a pause of more than 6ms between
bytes then “time out” occurs, the CTS line returns high and the command fails (flagged as RS232 error). The CTS signal
idles in this HIGH state (to inhibit host communication) until the next polling cycle begins.

15

\ ol <D
n)) .)
E -
cce S
Technology Ltd 1509001
Certificate

Embedded RFID made simple

The default communication baud rate is 9600 baud, 8 bits, 1 stop, no parity.

The Micro RWD MF-IC (low-power) version has been specifically designed to operate with very low average power
consumption but still remain responsive to cards entering and leaving the field and be able to read large amounts

of data as quickly as possible.

4.7.1 NO card present and NO host commands received.

Polling cycle rate (time between subsequent CTS low periods) is determined by the “polling rate” parameter stored in
the RWD EEPROM memory. This is typically set to a long period (4ms to 8 seconds, default setting 260mS) and is the
primary means to reduce average power consumption. This is because most of the polling cycle period is spent in a

power-down/sleep mode.

Not to scale TTL levels
CTS 5v
| 0 —
i Ov
—| | »| Polling cycle
6ms Polling cycle period set by RWD EEPROM parameter repeats
(CTS timeout) (4ms to 8 seconds, default 260mS)
N~ ——
-—“N/'-

RF ON for brief period

RF OFF. Power-down/sleep period (to check for card)

4.7.2 MIFARE/ICODE card in field, NO host commands received.

When a card is detected in the field the polling rate changes to approximately 100ms (between CTS low periods). This

is to ensure that the RWD can respond quickly to the card leaving the field and a new card being presented.

Not to scale TTL levels
CTS Sv
|] —

100ms polling rate 100ms polling rate) ov
—>| | > |e > Polling cycle

6ms (CTS timeour) repeats

\ /l_Y_J

RF OFF. Power-down/sleep period RF ON for brief period (to check for card)

4.7.3 Host commands received and processed.

When the RWD receives commands from the host computer, the polling rate increases to allow a quick response
to the command. This means that commands such as READ or WRITE BLOCK can be repeated quickly and the large

amounts of data read from, or written to the card as fast as possible.

The polling cycle delay in this case is effectively the minimum, so the RWD responds to the host command

immediately after the RF communication is complete.

16

NI v
Eccel.... %

Embedded RFID made simple

Example a) NO card present, single CARD UID (0x55) command received.

Note: at 9600 baud serial communication rate, a single byte is received or transmitted in approximately 1mS (104u$S
per bit). If no commands follow then the polling rate reverts back to the stored parameter value as in (1).

Command byte received +

6mS CTS timeout Not to scale TTL levels

CTs K 5v
| —

ov

—] | | | Polling cycle period set by EEPROM =~ —»| Polling cycle
Tms ¢ 10ms 6ms parameter (4ms to 8§ seconds) repeats
® " |
RWD—] 5t
RX ©
(1ms) Command byte received ov
——-| ;
RWD sv
X i ® Acknowledge byte reply
(1ms) ov
(© Host waits for CTS falling edge then sends command byte.
() RWD processes command, RF turned ON for brief period to check if card present.
(3) RWD then replies with acknowledge byte (+ data).
Example b) MIFARE card in field, single CARD UID (0x55) command received
Command byte received +
omsS CTS tmeout Not to scale TTL levels
CTS ¥ P
gid] Hp——
v
— e >| \ 100ms polling delay —————— Polling cycle
®5Tms 23ms : 6ms (card still present) repeats
RWD 5v
| (1ms) Command byte received 0v
RWD Sv
X ©) Acknowledge byte + 7 byte serial number reply
Oov
]
15ms dms

17

N
Eccel....

Embedded RFID made simple

Example c) MIFARE card in field, valid READ BLOCK command received (Read cmd (0x52) + Keycode number +
Block number)

Command + parameters

received +~ 6mS CTS Not to scale TTL levels
CTS ¥ Sv
|| L

ov
— | > | 100 ms polling delay —| Polling cycle
9ms 37ms 6ms (card still present) repeats
RWD—] v
RX 19
(3ms) Command byte + parameters received Ov
— :
RWD | 5v
X ® - Acknowledge byte + 16 byte block data reply
| | OY
i bl -
20ms 17ms

4.7.4 Auxiliary output and BEEP delay timing (if options are enabled)

Card in field for first time, Auxiliary output enabled and BEEP delay set. Green LED signal can be used as an
interrupt signal to the host to indicate that auxiliary data will follow.

TTL levels
GREEN —‘ sv
LED Not to scale g‘v
v

AUX —

L8 ov
| Representation of Auxiliary (serial/Wiegand) data output on OP0 / OP1 pins
2mS after Green LED signal

CTS % 5v
BEEP delay after Aux output LH CTS goes LOW after Aux out/BEEP delay)
(if enabled) > e 0v

4.8 Summary of Polling rates and command timing

Three polling rates:

1) NO card and NO commands: Polling rate determined by Polling rate parameter in RWD EEPROM (4mS to 8
seconds, default setting 260mS)

2) Card present but NO commands: 100ms polling delay between CTS pulses.

3) Command (and parameters) received: 10ms polling delay to next CTS pulse.

18

For lowest power consumption, the Polling rate parameter in EEPROM is typically set to a long period (> 1 second).
Auxiliary output (if enabled) occurs after Green LED signal and before CTS.

Transmitted or Received data byte. 9600 baud. 8 bit, 1 stop. No parity (104 pS per bif)

b0 bl b2 b3 b4 b5 b6 b7 b8 b9
Sv

1 0 TTL levels

idle START 8 bit data STOP idle
4.9 Host Driver software

Communication with the MicroRWD module is via the TTL level R$232 interface (9600 baud, 8 bit, 1 stop bit, no parity)
and uses the CTS line for hardware handshaking. The Windows applications (supplied with the Evaluation kit) can be
used to communicate with the module or the user can write their own application on a PC or a microcontroller. Please
note that the host software must be able to handle the three distinct polling rates (different periods between CTS
pulses). The following basic communication algorithm can be used:

Typical host computer “pseudo” driver code

if (Green LED ON (pin 2 == 0))

{
if (CTS == 0)
{
SEND_BYTE(0x52);
SEND_BYTE(0x01);
SEND_BYTE(0x00);
GET_REPLY();
}
}

19

\\\ . £ /)
Eccel.... %

Embedded RFID made simple

4.10 Switch to C1 mode

With these Turbo products the user can switch the reader to C1 mode temporarily using the command described
below. This can be useful for OTA upgrades or any other applications mixing the two protocols. The reader does not
send any response to this frame, and automatically switches to C1 mode, so the host application must change
communication parameters to 115200 baud, 8 bits, 1 stop, no parity. After software or hardware reset the reader will
be in the RWD reader mode again. To force C1 mode permanently please connect OP1 pin to GND.

B7 BO
Command: 01000011 (Ascii “C”, 0x43)
Parameter: 0000O0OO0OO0T1 (0x01)

4.11 Commands for MIFARE, ICODE and ISO14443B modes

These commands are common to all RWD/OEM Reader modes and have the same function, structure and arguments
no matter which mode is selected.

4.11.1 Card/Label STATUS
Command to return card status. The acknowledge byte flags indicate general MIFARE/ICODE/1SO14443B card status.

B7 BO
Command: 01010011 (Ascii “S”, 0x53)
Acknowledge: 1 F F F F F F X (F = Status flags)

4.11.2 MESSAGE Report
Command to return product and firmware identifier string to host.

B7 BO
Command: 01111010 (Ascii “z”, 0x7A)

Reply: “zZRWD_MICODE_PLUS 1.0 Jul 22 2021 09:49:56 (PN51xx fmw: v0400)”

Returned string identifies product descriptor, project name, firmware version number and date of last software change
together with IB Technology copyright statement. Note that the string is always NULL terminated.

20

4.11.3 Program EEPROM

The Micro RWD has internal EEPROM for storing system parameters such as polling rate and authorised identity codes
(serial numbers). This command sequence allows individual bytes of the EEPROM to be programmed with new data.
The data is internally read back after programming to verify successful operation.

B7 BO
Command: 01010000 (Ascii “P”, 0x50)
Argumentl: NN NNNNNN (N = EEPROM memory location 0 - 255)
Argument2: DD DDDDDD (D = data to write to EEPROM)
Acknowledge: 1 X X XF XX F (F = Status flags)

4.11.4 Internal EEPROM memory map

Polling delay parameter values (EEPROM location 0):

Parameter 0 value it De.lay
SLEEP Period

0x00 0mS
0x10 8 mS
0x20 16 mS
0x30 32mS
0x40 65 mS
0x50 132 mS
0x60 262 mS
0x70 524 mS
0x80 1 second
0x90 2 seconds
0xAO0 4 seconds
0xBO 8 seconds

Polling delay can be set from 0 to 8 seconds to give complete control over current consumption and battery life. Note
that setting Polling delay = 0x00 skips the SLEEP and power-down operation so polling is as fast as possible (and
current consumption is highest).

Byte 0: Polling Delay (SLEEP / Power down) period (default = 0x60 = approx 260 milliseconds)

21

N
Eccel.... “:

Embedded RFID made simple

Byte 1: Aux data output:
0x00 = OFF (NO output from OP0 / OP1)
0x03 = 9600 baud serial from OPO (default)

Byte 2: Uart baudrate — new in v2 hardware!

0x00 — 4800kbps

0x01 — 9600kbps (default)
0x02 — 19200kbps

0x03 — 38400kbps

0x04 — 57600kbps

0x05 — 115200kbps

Byte 3: MIFARE/ICODE/ISO14443B option byte:
MIFARE mode = 0x00 (default)
ICODE mode = 0x01
1ISO14443B mode = 0x02

Byte 5: Aux block address on card (MIFARE card block address 0 — 255), default 0x01, block 1
(only used if parameter byte 8 is set to 0x01 for internal Block Read)

Byte 6: Key number / type used for internal Block Read of Aux data:

(TxxKKKKK), (T = Key type, 0 = KeyA, 1 = KeyB)
(K = Key code number, 0 - 31), default = key 0x00 used as typeA
(only used if parameter byte 8 is set to 0x01 for internal Block Read)

Byte 7: “Beep” delay parameter (x 40 mS) default = 0x00 (OFF)
Byte 8: Aux output source data selection.

0x00 = use UID / serial number (default)
0x01 = perform Block Read

Byte 9: Aux out (serial data) redirection (OPO - pin 20 or Tx — pin 23)

0x00 = Serial aux output from OPO pin (default)
0x01 = Serial aux output from main Tx pin

Byte 10: Aux output serial format (Hex or ASCII),

HEX output = 0x00 (default)
ASCIl output = 0x01

Byte 11: Aux output byte order option:

plain data as read from card = 0x00 (default)
Byte order reversed = 0x01

Start of authorised card codes. List is terminated with FF FF FF FF sequence. List is regarded as empty (all identity codes valid) if
first code sequence in list is (FF FF FF FF). List can hold up to 60 identity codes (serial numbers)

Byte 12: OxFF Empty list
Byte 13: OxFF

22

Byte 14: OxFF
Byte 15: OxFF

Byte 16: (MSB) Tag identity code
Byte 17:

Byte 18:

Byte 19: (LSB)

Byte 255: Last Internal EEPROM location

Note that the polling delay parameter must be a valid value (as shown in the table above), other values will
give undefined results.

Factory Default RWD EEPROM parameter settings:

Byte 0: 0x60, 260mS Polling delay / SLEEP period

Byte 1: 0x03, Aux data output as 9600 baud serial on OPO
Byte 2: 0x01, Protocol baud, default 9600kbps
Byte 3: 0x00 MIFARE mode
Byte 4: 0x00
Byte 5: 0x01 Aux block address on card (only used if Byte 8 = 0x01)
Byte 6: 0x00 Key number / type used for internal Block Read of Aux data
(Use Key Code 0 as Key Type A, only used if Byte 8 = 0x01)
Byte 7: Ox00 “Beep” output delay OFF
Byte 8: 0x00 Aux output source data is UID (serial number).
Byte 9: 0x00 Aux output (serial data) directed to OPO pin.
Byte 10: 0x00 Aux output serial format, HEX byte format
Byte 11: 0x00 Aux data byte order, plain as read from card

4.11.5 Factory Reset

Command to restore Factory default EEPROM values and Stored Keys and perform hardware Reset operation. The
0x55 OxAA parameters protect against accidental operation. After Reset, the Red LED will flash 5 times indicating the
successful loading of the Factory default values.

B7 BO
Command: 01000110 (Ascii “F”, 0x46)
Argumentl: 01010101 0x55
Argumentl: 10101010 OxAA

Reset occurs after the command is processed so there is no Acknowledge byte reply.

23

d
N £A
nY)
N
E C C e ' Technology Ltd St
Certificate

Embedded RFID made simple

4.11.6 Command Protocol (MIFARE Mode)

The following commands are supported in MIFARE mode. The corresponding acknowledge code should be read back
by the host and decoded to confirm that the command was received and handled correctly. The serial bit protocol is
9600 baud, 8 bits, 1 stop, no parity (Isb transmitted first).

The status flags returned in the Acknowledge byte are as follows:

b7 b6 b5 b4 b3 b2 bl b0
11 111111

| | EEPROM error (Internal EEPROM write error)
| Card OK (Card serial number matched to identity code list)

(O

(O

| | | | RxOK (Card communication and acknowledgement OK)

| | | RS232 error (Host serial communication error)

| | MFtype (0= MF 1k byte card, 1 = MF 4k byte card)

| ULtype (0 = MF standard 1k/4k card, SINGLE UID), 1 = MF Ultralight card, DOUBLE UID)
F

MFRC error (Internal or antenna fault)

Note that bit 7 is fixed so that using a MIFARE 1k card, the RWD acknowledge response to a valid host command
would generally be 86 (Hex), indicating that a matched (or authorised) MF 1k card is present. The MF Ultralight card
has a different memory structure to the standard 1k/4k MF cards so bits 4 and 5 have to be checked to determine
which card type is present. Note also that only the relevant flags are set after each command as indicated in the
following specification.

4.11.7 Store Keys

The Micro RWD has additional internal storage for 32 Security KEYs. Six byte Key codes are required to access individual
card sectors for any Read or Write operations. This command sequence allows 6 byte Key codes to be stored at any
one of the 32 key code locations. Factory defaults are Infineon/Philips specified transport key pairs (Hex FF FF FF FF FF
FF / Hex FF FF FF FF FF FF) and (Hex A0 A1 A2 A3 A4 A5 / Hex BO B1 B2 B3 B4 B5) and these are stored in the RWD non-
volatile memory during manufacture. Note that due to the fundamental nature of these Key codes, incorrect values
may render the system inoperable. Only one or two Security key codes are required to unlock a card sector so the
provision of 32 storage locations allows for many possible applications and card uses.

IT IS STRONGLY ADVISED THAT THE KEY CODES IN THE RWD AND STORED ON THE MIFARE CARD ARE NOT CHANGED
UNTIL THE OPERATION OF THE MIFARE CARD SECURITY IS FULLY UNDERSTOOD.

B7 BO
Command: 01001011 (Ascii “K”, 0x4B)
Argumentl: x x x KKKKK (K = Key code number, 0 - 31)
Argument2: DDDDDDDD (D = data to write to EEPROM, LS byte)
Argument3: DDDDDDDD
Argument4: DDDDDDDD
Argument5: DDDDDDDD

24

e
\ 4 =3
))
E C C e ' Technologultd egge
Certificate

Embedded RFID made simple

Argument6: DDDDDDDD
Argument7: DDDDDDDD (D = data to write to EEPROM, MS byte)
Acknowledge: I1XX XFXXF (F = Status flags)

4.11.8 Internal Key Storage memory map (default settings)

Location 0 (0x00): Key code O (Default OxFF FF FF FF FF FF)
Location 1 (0x01): Key code 1 (Default OxFF FF FF FF FF FF)
Location 2 (0x02): Key code 2 (Default 0OxAO A1 A2 A3 A4 A5)
Location 3 (0x03): Key code 3 (Default 0xBO B1 B2 B3 B4 B5)
Location 28 (0x1C): Key code 28 (Default OXFF FF FF FF FF FF)
Location 29 (0x1D): Key code 29 (Default OXFF FF FF FF FF FF)
Location 30 (Ox1E): Key code 30 (Default 0XxAO A1 A2 A3 A4 A5)
Location 31 (Ox1F): Key code 31 (Default 0xBO B1 B2 B3 B4 B5)

Note that MIFARE cards manufactured by Infineon and other companies under licence can have default transport key
codes of (OxFF FF FF FF FF FF) and Philips/NXP cards have (OxAO Al A2 A3 A4 A5 / 0xBO B1 B2 B3 B4 B5) default
transport keys. The MicroRWD MF has both pairs stored as factory settings to allow ease of use when the system is
first used. (More information on the MIFARE card memory maps and KeyA, KeyB Security Keys can be found at the
end of this document).

4.11.9 Write Card Block

Command to write 16 bytes of data to specified MIFARE block. A Block is made up of 16 bytes and there are four
blocks in each card sector (sixteen blocks per sector in upper half of MIFARE 4k card). Note that blocks 3, 7, 11, 15 etc
are sector trailer blocks that contain Security Key data and Access bits. Writing incorrect information to these blocks
can permanently disable the sector concerned. The first argument is the block number to write data to, the second
argument specifies which key code (0 - 31 from the internal storage area) to use for sector authentication/unlocking
and if the Security Key is to be used as a KeyA or KeyB type code. If the write was unsuccessful (invalid card,
authentication failed or card out of field) then Status flags in acknowledge byte indicate error.

(Ascii “W”, 0x57)

B7
Command: 01010111
N NNNNNNN (N = MF Card Block Address 0 — 255)

Argumentl:

25

D &
Eccel....

Embedded RFID made simple

Argument2: Tx x KKKKK (T = Key Type, 0 = KeyA, 1= KeyB)
(K = Key code number, 0 — 31)
Argument3; DDDDDDDD ~ (D = LS Byte of data to write to card)
Argument4: DDDDDDDD
Argument5: DDDDDDDD
Argument6: DDDDDDDD
¢ > 16 Bytes of data
Argumentl5: D DDDDDDD
Argumentle: D DDDDDDD
Argumentl7. D DDDDDDD
Argumentl8: D DDDDDDD _/ (D =MS Byte of data to write to card)
Acknowledge: 1 F F F F F FX (F = Status flags)

Note that MIFARE Ultralight cards DO NOT USE Security Keys or CRYPTO Authentication and the memory is organised
differently as groups of 4 bytes (Pages). Only one Page of 4 bytes can be written at a time so to maintain compatibility
and a simple RWD host command set, the same command as above is used to write data to Ultralight cards. The
command and arguments have the same structure but different meanings. The “Block” address is treated as a “Page
Address” and the KeyType/Key number parameter is a dummy 0x00 byte. In addition the 4 bytes of data are padded
out to 16 bytes with dummy 0x00 bytes.

B7 BO
Command: 01010111 (Ascii “W”, 0x57)
Argumentl: X X X X NNNN (N = UL Card Page Address 0 — 15)
Argument2; 00000O0OOCO (Dummy byte, 0x00)
Argument3: DDDDDDDD (D = LS Byte of data to write to UL card)
Argument4: DDDDDDDD
Argument5: DDDDDDDD
Argument6: DDDDDDDD (D = MS Byte of data to write to UL card)
Argument7 — Argument18

0000O0O0OO0CDO 12 Dummy padding bytes, 0x00
Acknowledge: 1 F F F F F FX (F = Status flags)
4.11.10 Read Card Block

Command to read 16 bytes of data from specified MIFARE block. The first argument is the block number to read data
from, the second argument specifies which key code (0 - 31 from the internal storage area) to use for sector
authentication/unlocking and if the Security Key is to be used as a KeyA or KeyB type code. If the read was successful,
indicated by acknowledge status flags then sixteen bytes of block data follow.

B7 BO
Command: 01010010 (Ascii “R”, 0x52)
Argumentl: N NNNNNNN (N = MF Card Block Address 0 — 255)
Argument2: Tx x KKKKK (T = Key Type, 0 = KeyA, 1= KeyB)

26

(K = Key code number, 0 — 31)
Acknowledge: 1 F F F F F F X (F = Status flags)

Data only follows if Read was successful

Replyl: DDDDDDDD ~ (D = LS Byte of data Read from card)
Reply2: DDDDDDDD
Reply3: DDDDDDDD
Reply4: DDDDDDDD
i > 16 Bytes of data
Reply13: DDDDDDDD
Reply14: DDDDDDDD
Reply15: DDDDDDDD
Reply16: DDDDDDDD _/ (D = MS Byte of data Read from card)

Note that as mentioned for the WRITE command, MIFARE Ultralight cards DO NOT USE Security Keys or Authentication
and the memory is organised differently as groups of 4 bytes (Pages).

However, unlike the Write command, 16 bytes (4 pages) can be read in a single operation The same Read command
as above is used except the “Block” address is treated as a “Page Address” and the KeyType/Key number parameter is
a dummy 0x00 byte. For page numbers greater than 12, the card data wraps around to page O etc.

B7 BO
Command: 01010010 (Ascii “R”, 0x52)
Argumentl: X X X X NNNN (N = UL Card Page Address 0 — 15)
Argument2; 0000O0O0OO0CDO (Dummy byte, 0x00)
Acknowledge: 1 F F F F F FX (F = Status flags)

Data only follows if Read was successful

Reply1l: DDDDDDDD ~, (D =LSByte of data Read from UL card)
Reply2: DDDDDDDD

Reply3: DDDDDDDD

Reply4: DDDDDDDD

i > 16 Bytes of data

Reply13: DDDDDDDD

Reply14: DDDDDDDD

Reply15: DDDDDDDD

Reply16: DDDDDDDD _/ (D= MS Byte of data Read from UL card)
4.11.11 Inc Value (only operates on Value Data Structure)

Command to increment integer within a Value Data Structure. The command loads the value from the specified block
address, adds the integer parameter and stores the result at the same or another block address. Note that the source
block must have been formatted as a Value Block beforehand according to the data structure below, using the WRITE

27

D &
Eccel....

Embedded RFID made simple

command. The INC Value command only operates on a "Value Block Structure" and will fail if the block configuration
or the specified key type is incorrect.

Value Block Structure

Example format for value = 100 decimal (0x64), at block address 0.
(Value data stored LS byte first, ADR = block address, ADR = inverted block address)

0x64 00 00 00 9B FF FF FF 64 00 00 00 00 FF 00 FF

Byte: 0 1 2 3 4 56 7 89 10 11 12 13 14 15
4«———p» <«—» <«——» ADR | ADR |
Value Inverted Value Value
ADR ADR

The first argument is the source block address to load data from, the second argument specifies which key code
and type to use for sector authentication (0-31 and if it is KeyA or KeyB type). The third argument specifies the
destination block address where the incremented data is stored. Note that source and destination blocks must
be within same authenticated sector. The four byte positive integer to add follows (least significant byte first).

B7 BO
Command: 01001001 (Ascii “T”, 0x49)
Argumentl: N NNNNNNN (N = MF source block address 0 — 255)
Argument2: Tx x KKKKK (T = Key Type, 0 = KeyA, 1= KeyB)
(K = Key code number, 0 — 31)
Argument3: N NNNNNNN (N = MF destination block address 0 — 255)
Argument4: DDDDDDDD (D = LS byte of integer to add)
Argument5: DDDDDDDD bvte i
Arguments: DDDDDDD D 4 bvte integer
Argument7: DDDDDDDD (D = MS byte of integer to add)
Acknowledge: 1 F F F F F FX (F = Status flags)
4.11.12 Dec Value (only operates on Value Data Structure)

Command to decrement integer within a Value Data Structure. The DEC Value command operates as the INC command
except the integer parameter is subtracted from the loaded value. The first argument is the source block address to
load data from, the second argument specifies which key code and type to use for sector authentication (0-31 and if
it is KeyA or KeyB type). The third argument specifies the destination block address where the decremented data is
stored. Note that source and destination blocks must be within same authenticated sector. The four byte positive
integer to subtract follows (least significant byte first).

28

B7 BO
Command: 01000100 (Ascii “D”, 0x44)
Argumentl; NNNNNNNN (N = MF source block address 0 — 255)
Argument2; Tx x KKKKK (T = Key Type, 0 = KeyA, 1= KeyB)

(K = Key code number, 0 — 31)

Argument3; NNNNNNNN (N = MF destination block address 0 — 255)
Argument4: DDDDDDDD (D = LS byte of integer to subtract)
Argument5: DDDDDDDD 4bvte i
Arguments: DDDDDDD D vie integer
Argument?: DDDDDDDD (D = MS byte of integer to subtract)
Acknowledge: 1 F F F F F FX (F = Status flags)
4.11.13 Transfer Value (only operates on Value Data Structure)

Command to transfer (copy) Value Data Structure. The command loads the value from the specified block address and
then stores the result at the same or another block address. As with INC and DEC commands the source block must
have been formatted as a Value Block beforehand and the block addresses must be within same authenticated sector.
The first argument is the source block address to load data from, the second argument specifies which key code to use
for sector authentication (0-31) and if it is a KeyA or KeyB code. The third argument specifies where the data is stored.

B7 BO
Command: 01010100 (Ascii “T”, 0x54)
Argumentl: N NNNNNNN (N = MF source block address 0 — 255)
Argument2: Tx x KKKKK (T = Key Type, 0 = KeyA, 1= KeyB)
(K = Key code number, 0 — 31)
Argument3: N NNNNNNN (N = MF destination block address 0 — 255)
Acknowledge: 1 F F F F F FX (F = Status flags)

If the Inc, Dec or Transfer function was unsuccessful (invalid card, card out of field, authentication failed or data
structures are incorrect) then Status flags in acknowledge byte indicate error. Note that the value manipulation
commands operate internally on the MIFARE card and no data is transferred back to the MicroRWD. Note also that
Ultralight cards do not support Value Data Structures or the Inc, Dec, Transfer commands.

4.11.14 Card UID

Command to return card status and UID (Unique Identifier or Serial number).
The acknowledge byte flags indicate general MIFARE card status.

29

N

B7 BO
Command: 01010101 (Ascii “U”, 0x55)
Acknowledge: 1 F F F F F FX (F = Status flags)

Data only follows if card was selected OK with no errors detected.

Replyl: DDDDDDDD (D = LS Byte of UID/Serial number from card)
Reply2: DDDDDDDD

Reply3: DDDDDDDD

Reply4: DDDDDDDD

Reply5: DDDDDDDD

Reply6: DDDDDDDD } Dummy bytes (0x00) for MIFARE 1k/4k card types
Reply7: DDDDDDDD

Note that MIFARE 1k and 4k cards have a four-byte serial number but MIFARE Ultralight cards have a seven
byte serial number. To accommodate all card types, the Card UID command returns a seven-byte field with
the last three bytes padded out with 0x00 dummy bytes in the case of MIFARE 1k/4k cards.

4.11.15 Type Identification

Command to return the ATQA (Answer to Request, Type A) two-byte codes and the SAK (Select
Acknowledge) single-byte code after the complete UID has been acquired. As part of the initial
communication with the MIFARE card (as defined by ISO 14443A specification), the MIFARE transponder
responds to REQA (Request Command, Type A) with ATQA. The two-byte ATQA contains information that
allows particular transponder types to be indentified. Following on from this the MIFARE transponder
responds to the SELECT (Select Command, Type A) with SAK (Select Acknowledge, Type A). The SAK code is
a single byte value that contains further information about the type of transponder and the length of the
UID. The SAK value reported is the final value after all “cascade levels” and the complete UID has been
acquired.

NOTE THAT ALL THE COMMUNICATION PROTOCOL IS HANDLED INTERNALLY AND THIS COMMAND IS
INCLUDED FOR DIAGNOSTIC PURPOSES TO ALLOW THE USER TO DETERMINE THE EXACT TYPE OF MIFARE
CARD PRESENT IN THE FIELD, IF REQUIRED.

B7 BO
Command: 01111000 (Ascii “x”, 0x78)
Acknowledge: 1 F F F F F FX (F = Status flags)

Data only follows if card was selected OK with no errors detected.

Reply1: DDDDDDDD ATQA - MSB
Reply2: DDDDDDDD ATQA - LSB
Reply3: DDDDDDDD SAK

30

E C C e I Technology Ltd
c

50 9001
Sertificate No. GB2005225

N

Embedded RFID made simple

Note that many of the “extended” MIFARE types are dual interface cards with embedded microcontrollers
for running “chip and pin” applications. Depending on the card type, the memory map and protocol of the
contactless MIFARE card interface may be different to MIFARE “classic” types. In these cases the
MicroRWD will report the UID using the Card UID command but read/write operation MAY NOT be fully

supported.

4.11.16

The following commands are supported in ICODE mode. The command code followed by optional data/arguments is
sent to the MicroRWD. The RWD replies with an acknowledge code (which is made up of various status flags)
followed by optional data. After the command (+ data) has been sent, the acknowledge code should be read back by
the host and decoded to confirm that the command was received and actioned correctly. The serial bit protocol is

Command Protocol (ICODE SLI Mode)

9600 baud, 8 bits, 1 stop, no parity (Isb transmitted first).

The status flags returned in the Acknowledge byte are as follows:

31

MF MF MF MF MF MF MF MF MF MF
UL 1K 4K DESFire | Prox Prox Prox Prox Prox Prox
ATQA - 0x00 | Ox00 | Ox00 | 0x03 OxXX | OxXX | OxXX | OxXX | OxXX | OxXX
MSB
ATQA - 0x44 | 0x04 | 0x02 | Ox44 0x08 | Ox04 | Ox02 | Ox48 | Ox44 | 0x42
LSB
Smart | Smart | Smart | Smart | Smart | Smart
MX MX MX MX MX MX
ATQA | OxXX | OxXX | OxXX | OxXX | OxXX | OxXX
- MSB
ATQA | Ox08 | 0x04 | 0x02 0x48 | 0x44 | 0x42
- LSB
MF MF INFINEON MF MF MF MF MF MF MF MF
UL 1K 1K 4K DESFire ProX | ProX | ProX | ProX | ProX | ProX
SAK | Ox00 | Ox08 | 0x88 0x18 | 0x20 0x20 | Ox08 | 0x28 | Ox00 | 0x20 | Ox08
MF MF MF Smart | Smart | Smart | Smart | Smart | Smart
ProX ProX ProX MX MX MX MX MX MX
SAK 0x28 0x18 0x38 0x00 0x20 0x08 0x28 0x18 0x38

3 b2 bl b0
11
| EEPROM error (Internal EEPROM write error)
| Card OK (Label serial number matched to identity code list)
| Rx OK (Label communication and acknowledgement OK)
RS232 error (Host serial communication error)

MFRC error (Internal or antenna fault)

b4 b3 b
011
||
|

Note that bit 7 is fixed so that the RWD acknowledge response to a valid host command would generally be 86 (Hex),
indicating that a matched (or authorised) ICODE tag is present.

4.11.17 Write Label Block

Command to write 4 bytes of data to specified ICODE transponder block. The first argument is the block number to
write data to (0 - 27), the next eight arguments specify the UID (Unique Identifier or serial number) of the tag to select
(sent least significant byte first). If the write was unsuccessful (invalid card, authentication failed or tag out of field)
then Status flags in acknowledge byte indicate error.

B7 BO
Command: 01010111 (Ascii “W”, 0x57)
Argumentl: X X X NNNNN (N = ICODE block address, 0 — 27)
Argument2: uuuuuuuu (LSB, UID0)
Argument3: uuuuuuuu (UIDY)
Argument4: Uuuuuuuu (UID2)
Argument5: Uuuvuuuuuuu (UID3)
Argument6: Uuuvuuuuuuu (UID4)
Argument7: uuvuuuuuuu (UID5)
Argument8: Uuuvuuuuuuu (UID6)
Argument9: Uuuvuuuuuuu (MSB, UID7)
Argument10: DDDDDDDD (D = LS Byte of data to write to tag)
Argumentl1: DDDDDDDD
Argument12: DDDDDDDD
Argument13: DDDDDDDD (D = MS Byte of data to write to tag)
Acknowledge: 1 F F F F F FX (F = Status flags)

4.11.18 Read Label Block

Command to read 4 bytes of data from specified ICODE transponder block. The first argument is the block number to
read data from (0 - 27), the next eight arguments specify the UID (Unique Identifier or serial number) of the tag to
select (sent least significant byte first). If the write was unsuccessful (invalid card, authentication failed or tag out of
field) then Status flags in acknowledge byte indicate error.

32

B7 BO
Command: 01010010 (Ascii “R”, 0x52)
Argumentl: X X X NNNNN (N = ICODE block address, 0 — 27)
Argument2: uuuuuuuu (LSB, UID0)
Argument3: uuuuuuuu (UIDY)
Argument4: uuuuuuuu (UID2)
Argument5: uuuuuuuu (UID3)
Argument6: Uuuvuuuuuuu (UID4)
Argument7: Uuuvuuuuuuu (UID5)
Argument8: uuuuvuuuuu (UID6)
Argument9: vuuuuuvuuuu (MSB, UID7)
Acknowledge: 1 F F F F F FX (F = Status flags)

Data only follows if Read was successful

Replyl. D D DDDDDD (D = LS Byte of data Read from ICODE tag)

Reply22D DDDDDDD

Reply3: D DDDDDDD

Reply:D DD D DDDD (D = MS Byte of data Read from ICODE tag)
4.11.19 Label UID

Command to return label status and UID (Unique Identifier or "serial number") of single (dominant) label. The
acknowledge byte flags indicate general Tag status. NOTE that if multiple labels are expected in the RF field then
LABEL INVENTORY command must be used to acquire full UID list.

B7 BO
Command: 01010101 (Ascii “U”, 0x55)
Acknowledge: 1 F F F F F F X (F = Status flags)

Data only follows if label responded OK and UID is available.

Reply1: uuuuuuuu (LSB, UID0)
Reply2: uuuuuuuu (UID1)
Reply3: uuuuuuuu (UID2)
Reply4: uuuuuuuu (UID3)
Reply5: uuuuuuuu (UID4)
Reply6: uuuuuuuu (UID5)
Reply7: uuuuuuuu (UID6)
Reply8: Uuuuuuuu (MSB, UID7)

33

4.11.20 Command Protocol (ISO14443B Mode)

The following commands are supported in ISO14443B mode. The command code followed by optional
data/arguments is sent to the MicroRWD. The RWD replies with an acknowledge code (which is made up of various
status flags) followed by optional data. After the command (+ data) has been sent, the acknowledge code should be
read back by the host and decoded to confirm that the command was received and actioned correctly. The serial bit
protocol is 9600 baud 8 bits, 1 stop, no parity (Isb transmitted first).

The status flags returned in the Acknowledge byte are as follows:

b7 b6 b5 b4 b3
0

1 10

|

| | Card OK (Card serial number matched to identity code list)
| | Rx OK (Card communication and acknowledgement OK)

| RS232 error (Host serial communication error)

MFRC error (Internal or antenna fault)

2b1b0
11

b3 b
11
| | | EEPROM error (Internal EEPROM write error)
|

Note that bit 7 is fixed so that the RWD acknowledge response to a valid host command would generally be 86 (Hex),
indicating that a matched (or authorised) ISO14443B card is present.

4.11.21 Card UID

Command to return Card status and UID (Unique Identifier or "serial number") of the single (dominant) card. The
acknowledge byte flags indicate general Tag status. Multiple 1SO14443B cards in the field will cause a data collision
and the RWD will return 0x80 status/acknowledge byte indicating NO card present.

B7 BO
Command: 01010101 (Ascii “U”, 0x55)
Acknowledge: 1 F F F F F F X (F = Status flags)

Data only follows if card responded OK and UID is available.

Reply1: UUUuUuUuUuUu (LSB, UIDO)
Reply?2: UUuUuUuUuUuUu (UID1)
Reply3: UUuUuUuUuUuUu (UID2)
Reply4: Uuuuuuuu (MSB, UID3)

34

D &
Eccel....

Embedded RFID made simple

4.11.22 Notes for Commands (MIFARE, ICODE, 1S014443B)

NOTE also that for the “Read Card Block” or “Card UID” command, if an error flag has been set in the Acknowledge
code then there will be NO following data.

NOTE that the serial communication uses hardware handshaking to inhibit the host from sending the Micro RWD
commands while Card interrogation is in progress. The serial communication system and protocol allows for a 10ms
‘window’ every Card polling cycle indicated by the BUSY(CTS) line being low. During this ‘window’ the host must assert
the first start bit and start transmitting data. The BUSY goes high again 10ms after the last stop bit is received. The
host must therefore send the command and all the arguments with no gaps otherwise timeout will occur and BUSY
goes high. NOTE that only one command sequence is handled at a time.

4.12 Method of Operation

The system works on a polling principle whereby the RF field is turned on for a short period to check if a card is present.
Authentication and Read/Write operations can then be performed before the RF field is turned off again and the
process repeats. A programmable polling delay period occurs after the RF is turned off and the microcontroller and RF
circuitry is put into sleep and power-down modes during this time to achieve low average power consumption.

When a card is detected in the field a multi-pass handshaking procedure takes place where card information and serial
number data is exchanged and checked for integrity. Once this procedure has completed successfully an individual
card can be selected and is available for other operations.

The RWD itself has the additional feature of then checking the four byte MIFARE/ISO14443B UID/serial number (or
least significant four bytes of Ultralight/ICODE UID) against an internal authorisation list. The RWD internal EEPROM
contains a list of four byte Identity codes (up to 60 of them) located from byte 12 onwards. If the list has FF FF FF FF
(hex) stored at the first location (EEPROM bytes 12 - 15) then the list is treated as empty so the Identity code check is
skipped.

Otherwise the card serial number is checked against all the entries in the list (until the FF FF FF FF termination code is
reached) and if matched then the RWD allows the card to be accessed for other operations. If not the Red LED remains
on and the card is blocked for further access. This is an additional level of security that can be used as a “mini access
control” system for simple applications that only involve the serial number or where the Security Keys are not known.

For MIFARE cards, once the RWD has selected the card and has matched the serial number against it’s internal list (or
the list is empty) then the Read/Write (or Inc/Dec/Transfer) operations can be performed. These require an internal
high-security Authentication Crypto algorithm to take place that use the supplied Security Keys to gain access to a
particular sector. If the Key selected does not match the Key stored in the MIFARE card sector then the operation fails
and the Red LED is turned on again

So in summary, a card can be successfully selected but can be blocked by the RWD authorisation list and fail Read/Write
operations because the Keys are incorrect. Even if the Security Key is incorrect the Serial number can still be read using
the “Card UID” command.

For ICODE operation, when a label is in the RF field a handshaking procedure occurs and the RWD acquires the labels
UID (Unique Identifier/serial number). The least significant four bytes of the UID (UIDO - UID3) are used to check against
the internal authorisation list. For subsequent read/write operations, the labels are individually selected by including

35

d
N £A
nY)
N
E C C e ' Technology Ltd St
Certificate

Embedded RFID made simple

their UID in the command sequence. The principle of the RF field being ON only for label communication means that
the label is effectively turned off and reselected each polling cycle. The assumption is therefore made that after the
label UID has been acquired (using Label UID command), the label is still present for the next polling cycle.

4.13 Basic RWD Communication

For basic operation of the MicroRWD connected to a host computer, the RWD can either be polled or communication
can be triggered by an interrupt signal (Green LED output). In either case for MIFARE operation, the host would
generally send the “STORE KEYS” command to load a custom security key into the RWD memory or simply use the pre-
loaded default key values.

For a polling technique, the host computer would then keep sending the “STATUS” or “CARD UID” command and would
monitor the acknowledgement code until a valid card was detected.

For the interrupt technique, the Green LED output can be used as an interrupt signal connected to the host computer.
The Green LED output is normally high and goes low only when a valid card has been detected. This falling-edge signal
can trigger a host interrupt to then send the “STATUS” or “CARD UID” command to determine the card type and serial
number.

In both cases once a valid card has been detected a “READ BLOCK” or “WRITE BLOCK” command can be sent and the
acknowledge code monitored to establish that the operation was successful.

36

N

E C C e ' Technologultd e
Certificate

Embedded RFID made simple

> EF O

Mifare card successfully selected
{Serial number available)

v against RWD internal

\ “
Card detected ?

Multi-pass
handshaking procedure

Yes
WD Ident code
list empty ?

Checlk Serial number

Ident code list

Idmtmk No

matched 7

Polling

delay

Yes

ead Write No

operaticn
required 7
Yes

Load selected Security
Eey

Perform Crypto
Authentication on selected
Sector using selected Key

Mo
Succes$

Yes
Perform Fead Write/ Inc/Dec/ Transfer
operation

RF OFF |of

LEDs ON/OFF and Aux output (if selected)

v

For ICODE operation,
the label is selected by
including the UID in the
command sequence

N £A
Eccel... %%

Embedded RFID made simple

4.14 Auxiliary Asynchronous Serial output
If selected, data can be automatically output from the OPO or main TX pin as 4-bytes of data transmitted
asynchronously at 9600 baud, 8-bits, 1 stop-bit, no parity. The data source can be selected as the 4-byte UID

(serial number), the least significant 4-bytes of a double UID or the least significant (first) 4-bytes of a card
memory block.

Data bytes transmitted at 9600 baud, 8-bits, 1-stop bit, No parity (104 uS per bit)

bo bl b2 b3 b4 b5 b6 b7 b8 b9
5v

1 0 TTL levels
v jdle START 8 bit data STOP idle

38

5. C1 protocol compatibility mode

With these Turbo products the user can switch the reader to C1 mode which means the reader supports all of the RFID
commands supported by our C1 products using the same binary interface. To enable this mode. the user has two
options:

e Send frame using with two bytes [0x43 0x01]
e Connect OP1 pin to GND before power is connected to the power supply

To confirm this mode, the device keeps the green LED always on but red LED is off (opposite to RWD/OEM mode). In
C1 mode, the reader supports all of the tags supported by C1 devices like MIFARE® Classic® in 1K, 4K memory, ICODE,
MIFARE Ultralight®, MIFARE DESFire® EV1/EV2, MIFARE Plus® support. In this mode the device doesn’t have any built-
in polling like in the C1 devices. Instead, stand-alone polling mode is available in RWD/OEM mode.

The second biggest advantage of using this mode is OTA upgrade using the C1 client free application. The binary file
should be downloaded from our website manually.

5.1 Overview

This binary protocol was designed to be as simple as possible to implement on the host side whilst still providing robust
communication. Can be user over USB in USB version or RS232 connection. The communication parameters are always:

e Baud rate: 115200bps
e Data: 8 bit

e Parity: None

e Stop bits: 1 bit

e Flow Control: none

5.2 Frame structure

Communication with the module is symmetric so frames sent to and received from the module are coded in the same
way. All frames contain fields as described in the table below.

SR 201 Command length
Frame STX length + 2bytes g Command body CRC16
XOR
CRC
1 byte 2-bytes 2-bytes 1-byte n-bytes 2-bytes
Command body | e \ith oxff
length, LSB, Command Command body
OxF5 . of command Command
maximum value parameters CRC, LSB
1024 length bytes

39

N ¢
Eccel.... %

Embedded RFID made simple

5.3 CRC calculation

CRC is a 16-bit CRC-CCITT with a polynomial equal to 0x1021. The initial value is set to OxFFFF, the input data and the
output CRC is not negated. In addition, no XOR is performed on the output value. Example C code is shown below.

static const uintl6_t CCITTCRCTable [256] = {

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5,
0x60c6, 0x70e7, 0x8108, 0x9129, Oxalda, Oxbléb,
Oxc18c, Oxdlad, Oxelce, Oxflef, 0x1231, 0x0210,
0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, Oxa35a, O0xd3bd, 0xc39c,
0xf3ff, Oxe3de, 0x2462, 0x3443, 0x0420, 0x1401,
0x64e6, 0x74c7, 0Ox44a4, 0x5485, Oxa56a, Oxb54b,
0x8528, 0x9509, OxeS5ee, Oxf5cf, Oxc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6,
0x5695, 0x46b4, Oxb75b, Oxa77a, 0x9719, 0x8738,
Oxf7df, Oxe7fe, 0xd79d, Oxc7bc, 0x48c4, 0x58e5,
0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, Oxd9ed, O0xe98e, Oxf9af, 0x8948, 0x9969,
0Oxa90a, 0xb92b, Ox5af5, Ox4ad4, O0x7ab7, 0x6a96,
Oxla71, 0x0a50, Ox3a33, 0x2al2, Oxdbfd, Oxcbdc,
Oxfbbf, Oxeb9e, 0x9b79, 0x8b58, Oxbb3b, Oxabla,
Ox6bcab, 0x7c87, Ox4ce4, 0x5cc5, 0x2c22, 0x3c03,
0x0c60, Ox1lc4l, Oxedae, Oxfd8f, Oxcdec, Oxddcd,
Oxad2a, OxbdOb, 0x8d68, 0x9d49, 0x7e97, 0x6ebb,
Ox5ed5, Ox4ef4, O0x3el3, Ox2e32, Oxle51, 0x0e70,
Oxff9f, Oxefbe, Oxdfdd, Oxcffc, Oxbflb, Oxaf3a,
0x9f59, 0x8f78, 0x9188, 0x8la9, Oxblca, Oxaleb,
0xd10c, Oxcl2d, Oxfld4e, Oxel6f, 0x1080, 0x00al,
0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, Oxa3fb, Oxb3da, Oxc33d, Oxd3lc,
O0xe37f, O0xf35e, 0x02bl, 0x1290, 0x22f3, 0x32d2,
0x4235, 0x5214, 0x6277, 0x7256, Oxb5ea, Oxa5chb,

40

N ¢
Eccel.... %

Embedded RFID made simple

0x95a8, 0x8589, Oxf56e, Oxe54f, O0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447,
0x5424, 0x4405, Oxa7db, Oxb7fa, 0x8799, 0x97b8,
Oxe75f, Oxf77e, Oxc71d, Oxd73c, 0x26d3, 0x36f2,
0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, Oxe92f, 0x99c8, 0x89e9,
0xb98a, Oxa9ab, 0x5844, 0x4865, 0x7806, 0x6827,
0x18c0, 0x08el, 0x3882, 0x28a3, Oxcb7d, Oxdb5c,
Oxeb3f, Oxfble, 0x8bf9, 0x9bd8, Oxabbb, Oxbb9a,
0x4a75, Ox5a54, 0Ox6a37, Ox7al6e, OxOafl, OxladoO,
0x2ab3, 0x3a92, Oxfd2e, Oxed0f, Oxdd6c, Oxcd4d,
Oxbdaa, Oxad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07,
0x5c64, 0x4c45, Ox3ca2, 0x2c83, OxlceO, 0xOccl,
Oxeflf, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba,
0x8fd9, 0x9ff8, 0Ox6el7, Ox7e36, O0x4e55, O0x5e74,
0x2e93, 0x3eb2, 0x0edl, Oxlef0 };

static uintl6_t GetCCITTCRC(const uint8_t* Data, uint32_t Size) {
uintl6_t CRC;

uintlée_t Temp;

uint32_t Index;

if (Size == 0) {

return O;

}

CRC = OXFFFF;

for (Index = 0; Index < Size; Index++){

Temp = (uintl6_t)((CRC >> 8) A Dpata[Index]) & OxOOFF;
CRC = CCITTCRCTable[Temp] A (CRC << 8);

}

return CRC;

}

41

6. C1 command list

Commands are exchanged with the module using the protocol described above. All frames contain a command byte
and command arguments. Depending upon the command, arguments can be optional, so a command length can be in
the range from 1-1024 bytes.

6.1 Generic commands

6.1.1 Acknowledge frame (0x00)

This is the response message from the module to the host. This frame always contains 1-byte with command ID and
optional arguments.

Command description:

Argument Size | Value | Description
Command ID 1 0x00
Related command ID 1 X Related command code
Other parameters N X Depending on the requested command this parameter is n-bytes long
and contains parameters
Example:

HOST=>C1l: 0x02 GET_TAG_COUNT command

C1=>HOST: 0x00 - ACK byte
0x02 - related command code GET_TAG_COUNT
0x01 - argument for GET_TAG_COUNT - 0x01 - one tag detected

6.1.2 Error response (OxFF)

In case of any problems with executing the command, the device can send back ERROR response with error number
returned by the RFID chip. The most common errors are described below.

Command description

Argument Size | Value | Description
ACK 1 0x00
Command ID 1 0x01 | DUMMY_COMMAND
Example:
C1=>HOST: OXFF - Error byte

0x01 - related command code DUMMY_COMMAND

0x02 - Tayer byte

0x01 - Error number

42

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

Here is a list with the most common errors:
MIFARE Desfire errors — layer byte 0x19

Error byte:

0x80 - MF DF Response - No changes done to backup files

0x81 - MF DF Response - Insufficient NV-Memory

0x82 - MF DF Invalid key number specified

0x83 - MF DF Current configuration/status does not allow the requested command
0x84 - MF DF Requested AID not found on PICC

0x85 - MF DF Attempt to read/write data from/to beyond the files/record's limits
0x86 - MF DF Previous cmd not fully completed. Not all frames were requested or provided by the PCD
0x87 - MF DF Num. of applns limited to 28. No additional applications possible
0x88 - MF DF File/Application with same number already exists

0x89 - MF DF Specified file number does not exist

0x8A - MF DF Crypto error returned by PICC

0x8B - MF DF Parameter value error returned by PICC

0x8C - MF DF DesFire Generic error. Check additional Info

0x8D - MF DF ISO 7816 Generic error. Check Additional Info

ICODE specific errors — layer byte 0x15

Error byte:

0x01 - The command is not supported, i.e. the request code is not recognized
0x02 - The command is not recognized, for example: a format error occurred
0x03 - The command option is not supported

0xOF - Error with no information given or a specific error code is not supported
0x10 - The specified block is not available (doesn't exist)

0x11 - The specified block is already locked and thus cannot be locked again
0x12 - The specified block is locked and its content cannot be changed

0x13 - The specified block was not successfully programmed

0x14 - The specified block was not successfully locked

0x15 - The specified block is protected

0x40 - Generic cryptographic error

0x81 - The command is not supported, i.e. the request code is not recognized
0x82 - The command is not recognized, for example: a format error occurred
0x83 - The command option is not supported

0x84 - Error with no information given or a specific error code is not supported
0x85 - The specified block is not available (doesn't exist)

0x86 - The specified block is already locked and thus cannot be locked again
0x87 - The specified block is locked and its content cannot be changed

0x88 - The specified block was not successfully programmed

0x89 - The specified block was not successfully locked

0x8A - The specified block is protected

0x8B - Generic cryptographic error

43

D &
Eccel....

Embedded RFID made simple

Other layers errors:

0x01 - No reply received, e.g. PICC removal

0x02 - Wrong CRC or parity detected

0x03 - A collision occurred

0x04 - Attempt to write beyond buffer size

0x05 - Invalid frame format

0x06 - Received response violates protocol

0x07 - Authentication error

0x08 - A Read or Write error occurred in RAM/ROM or Flash
0x09 - The RC sensors signal over heating

O0xOA - Error due to RF.

0x0B - An error occurred in RC communication

0x0C - A length error occurred

0x0D - An resource error

O0xOE - TX Rejected sanely by the counterpart

0xOF - RX request Rejected sanely by the counterpart

0x10 - Error due to External RF

0x11 - EMVCo EMD Noise Error

0x12 - Used when HAL ShutDown is called

0x7F - An internal error occurred

0xFO — Protocol authorization error. This command is not allowed without protocol authorization (Command 0x12)

6.1.3 Dummy command (0x01)

This command takes no arguments. It is used to check that the module alive. The module replies to this command with
an ACK response and no optional parameters.

Command description

Argument Size | Value | Description

Command ID 1 0x01 | DUMMY_COMMAND
Response description

ACK 1 0x00

Command ID 1 0x01 | DUMMY_COMMAND

Example:

HOST=>C1l: O0x01 -DUMMY_COMMAND

C1=>HOST: 0x00 - ACK byte
0x01 - related command code DUMMY_COMMAND

6.1.4 Get tag count (0x02)

The command send to the module to read how many TAGS are in range of the antenna no matter which technology
of tag, so it returns the total amount present of all supported tag types. The maximum number for this standard

44

D
Eccel....

Embedded RFID made simple

discovery loop is 5. If you want to perform a full inventory command for ICODE tag types please refer to
ICODE_INVENTORY_xxx commands.

After this command, the module holds all UID’s and basic information about TAGs present in volatile memory and the
user can read it using the GET_TAG_UID command.

Command description

Argument Size | Value | Description
Command ID 1 0x02 | GET_TAG_COUNT
Response description
ACK 1 0x00
Command ID 1 0x02 | GET_TAG_COUNT
TAG count 1 X Maximum discovered tags is 5
Example:

HOST=>C1l: 0x02

GET_TAG_COUNT

C1=>HOST: 0x00 - ACK byte
0x02 - related command code GET_TAG_COUNT
0x01 - number of tags in range

6.1.5 Get tag UID (0x03)

This command should be executed after GET_TAG_COUNT frame to read information about the tag.

Command description

Argument Size | Value | Description
Command ID 1 0x03 | GET_TAG_UID
TAG idx 1 X TAG index in module memory, must me less than number of tags

reported by GET_TAG_COUNT command
Response description

ACK 1 0x00
Command ID 1 0x03 | GET_TAG_UID

0x01 - MIFARE Ultralight
0x02 - MIFARE Ultralight-C
0x03 - MIFARE Classic
0x04 - MIFARE Classic 1k
0x05 - MIFARE Classic 4k
0x06 - MIFARE Plus

0x07 - MIFARE Plus 2k
0x08 - MIFARE Plus 4k
0x09 - MIFARE Plus 2k sl2
0x0S - MIFARE Plus 4k sl2
0x0B - MIFARE Plus 2k sl3
0x0C - MIFARE Plus 4k sl3
0x0D - MIFARE Desfire
0xOF - JCOP

TAG type 1 X

45

N

E c c e ' Technology Ltd
c

Embedded RFID made simple

0x10 — MIFARE Mini

0x21 — ICODE Sli

0x22 — ICODE Sli-S
0x23 — ICODE Sli-L
0x24 — |CODE Slix
0x25 — ICODE Slix-S
0x26 — ICODE Slix-X
0x27 — ICODE Slix2
0x28 — ICODE DNA
0x42 — BLE device UID
0x50 — BLE PIN

SAK - byte for MIFARE family tags

TAG parameter ! X | DSEID - byte for ICODE family tags
uiD N X UID bytes. Max length is 8.
Example:
HOST=>Cl: 0x03 - GET_TAG_UID
0x00 - TAG idx
C1=>HOST: 0x00 - ACK byte
0x03 - related command code GET_TAG_UID
0x01 - MIFARE tag type
0x20 - tag parameter:

SAK byte for MIFARE family tags
DSFID byte for ICODE family tags

0x74 0x54 0x12 0x65 - tag UID bytes

6.1.6 Activate TAG (0x04)

The command executed to activate a TAG after the discovery loop if more than one TAG is detected.

Command description

Argument Size | Value | Description
Command ID 1 0x04 | ACTIVATE_TAG
TAG idx 1 X TAG index in module memory, must me less than number of tags
reported by GET_TAG_COUNT command
Response description
ACK 1 0x00
Command ID 1 0x04 | ACTIVATE_TAG
Example:
HOST=>C1l: 0x04 - ACTIVATE_TAG
0x00 - TAG 1idx
C1=>HOST: 0x00 - ACK byte
0x04 - related command code ACTIVATE_TAG

46

D
Eccel...."

Embedded RFID made simple

6.1.7 Halt (0x05)

The Halt command takes no arguments. It halts the tag and turns off the RF field. It must be executed at the end of
each operation on a tag to disable the antenna and reduce the power consumption.

Command description

Argument Size | Value | Description
Command ID 1 0x05 | HALT
Response description
ACK 1 0x00
Command ID 1 0x05 | HALT
Example:

HOST=>C1l: Ox05 - HALT

C1=>HOST: 0x00 - ACK byte
0x05 - related command code HALT

6.1.8 Set key (0x07)

This command sets a KEY in Key Storage Memory on a selected slot. Set key can be used for all RFID functions needing
authorization like e.g. READ/WRITE memory on the TAG etc. This command changes a key in volatile memory, so if the
user wants to save it permanently and load automatically after boot-up, then the user should use the CMD_SAVE_KEYS
command.

Command description

Argument Size Value | Description
Command ID 1 0x07 | SET_KEY
Key number 1 0-4 Key number in Key Storage Memory.

0x00 - AES 128 Key. (length = 16 bytes)

0x01 - AES 192 Key. (length = 24 bytes)

0x02 - AES 256 Key. (length = 32 bytes)

Key type 1 0-6 | 0x03 - DES Single Key. (length = 16 bytes)

0x04 - 2 Key Triple Des. (length = 16 bytes)

0x05 - 3 Key Triple Des. (length = 24 bytes)

0x06 - MIFARE (R) Key. (length = 12 bytes, key A+B)
Key 12-32 X Key bytes. Length must match to the type.
Response description

ACK 1 0x00
Command ID 1 0x07 | SET_KEY
Example:

HOST=>C1l: O0x07 - SET_KEY
0x00 - Key number
0x06 - MIFARE key type
0x00 0x00 0x00 0x00 0x00 0x00
OxFF OxFF OxFF OxXFF OXFF OXFF - Key bytes

47

S
Eccel...."

Embedded RFID made simple

C1=>HOST: 0x00 - ACK byte
0x07 - related command code SET_KEY

6.1.9 Save keys (0x08)

This command should be called if the user wants to save keys changed using the SET_KEY command in the module
non-volatile memory. Saved keys will be automatically loaded after power up or reboot.

Command description

Argument Size | Value | Description
Command ID 1 0x08 | SAVE_KEYS
Response description
ACK 1 0x00
Command ID 1 0x08 | SAVE_KEYS
Example:

HOST=>C1l: Ox08 - SAVE_KEYS

C1=>HOST: 0x00 - ACK byte

0x08 - related command code SAVE_KEYS

6.1.10 Reboot (Ox0A)

This command requests a software reboot for the reader. After this command the device will not accept any protocol

commands for 1 second.

Command description

Argument Size | Value | Description
Command ID 1 OxOA | REBOOT
Response description
ACK 1 0x00
Command ID 1 OxOA | REBOOT
Example:

HOST=>C1l: OxOA - REBOOT

C1=>HOST: 0x00 - ACK byte
Ox0A - related command code REBOOT

6.1.11 Get version (OxOB)

This command requests a version string from the device.

Command description

Argument

Size

Value

Description

Command ID

1

0x0B

GET_VERSION

48

D

e
E C c e ' Technology Ltd
c

Embedded RFID made simple

Response description

ACK 1 0x00

Command ID 1 0x0B | GET_VERSION

e i X X Version string, contains major and minor version and build data and time
e.g.: 1.1 Jan 18 2019 15:35:03

Example:

HOST=>C1:
C1l=>HOST:

6.1.12 Factory reset command (0x11)

Ox0OB - GET_VERSION

0x00 - ACK byte
0x0B - related command code GET_VERSION

0x31 Ox2e 0x31 Ox20 Ox4a Ox6l Ox6e 0x20
0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x20
0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 - version string bytes

This command should be user to perform a factory reset. To prevent resetting to factory default by accident, this
commands requires four extra bytes as extra parameters described in the table below.

Command description

Argument Size | Value Description

Command ID 1 Ox11 FACTORY_RESET

Extra bytes 4 0x01 0x02 0x03 0x04 | Four digits pin number (optional)
Response description

ACK 1 0x00

Command ID 1 Ox11 FACTORY_RESET _PIN

Example — setup new PIN:

HOST=>C1l: Ox11 - FACTORY_RESET

0x01 O0x02 Ox03 Ox04 - Extra parameters

C1=>HOST: 0x00 - ACK byte
0x11l - related command code FACTORY_RESET

49

D ¢
Eccel.... %

Embedded RFID made simple

6.2 MIFARE Classics commands

This set of commands should be performed on MIFARE Classics tags.

6.2.1 Read block (0x20)

The read block command should be used to read data from the tag. It takes as arguments the block number of the first
block to read, the number of blocks to read, the key A or B parameter, and the key number in key storage. The returned
ACK answer contains data read from the specified tag memory. The number of bytes of this data is MIFARE Classic
block size (16) multiplied by the number of blocks to be read.

Command description
Argument Size | Value | Description
Command ID 1 0x20 | MF_READ_BLOCK
Block number 1 X
Number of blocks 1 Y

X 0x0A — Key A should be selected from key storage

a7 U [T ETEED ! 0x0B — Ke:// B should be selected from ke\\// storage
Key number 1 0-4 | Key number in key storage

Response description
ACK 1 0x00
Command ID 1 0x20 | MF_READ_BLOCK
Read data v*16 | XXX Byte§ r(.aad from the tag. Number of bytes is number of requested blocks

multiplied by 16.
Example:

HOST=>C1l: 0x20 - MF_READ_BLOCK
0x02 - block number 2
0x02 - two blocks to read
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

C1=>HOST: 0x00 - ACK byte
0x20 - related command code MF_READ_BLOCK

0x01 Ox2e 0x41 0Ox22 0x43 0x11 0x8e 0x20
0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
0x81 0x23 0x42 0x28 0x33 0x01 Ox8e 0x72
0x31 0x35 O0x3a 0x33 0x35 O0x3a 0x30 0x33 - 32 bytes result

6.2.2 Write block (0x21)

The write block command should be used to write data to the tag. It takes as arguments the block number of the first
block to write, the number of blocks to write, the key A or B parameter, the key number in key storage, and the bytes
to be written. The number of bytes to be written must be exactly the number of blocks to write multiplied by 16.

50

D
Eccel....

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 0x21 | MF_WRITE_BLOCK
Block number 1 X
Number of blocks 1 Y
X 0x0A — Key A should be selected from key storage
G U [T ! 0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
SO TG Y*16 XXX | Bytesto wri.te: Number of this bytes must be number of requested
blocks multiplied by 16.
Response description
ACK 1 0x00
Command ID 1 0x21 | MF_WRITE_BLOCK
Example:
HOST=>C1l: 0x21 - MF_WRITE_BLOCK
0x02 - block number 2
0x02 - two blocks to write
Ox0A - key A should be selected from key storage
0x00 - first key should be selected from key storage
0x01 Ox2e 0Ox41 Ox22 0Ox43 Ox11l Ox8e 0x20
0x31 0x38 0x20 0x32 0x30 0Ox31 0x39 0x41
0x81 0x23 0x42 0x28 0x33 0x01 Ox8e 0x72
0x31 0x35 O0x3a 0x33 0x35 0x3a 0x30 0x33 - 32 bytes to write
C1=>HOST: 0x00 - ACK byte

0x21 - related command code MF_WRITE_BLOCK

6.2.3 Read value (0x22)

This command should be used to read a value from the tag. It takes as arguments the block number where the value
is stored, the key A or B parameter, and the key number in key storage. The returned ACK response contains a value
as a signed 32-bit value (LSB first) and an address byte as an unsigned 8bit value.

Command description

Argument Size | Value | Description
Command ID 1 0x22 | MF_READ_VALUE
Block number 1 X

X 0x0A — Key A should be selected from key storage
G U [ETETEEG 1 0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage

Response description

ACK 1 0x00
Command ID 1 0x22 | MF_READ_VALUE
Value 4 X Signed 32-bit value (LSB first)
Address 1 X Address byte

51

N

Eccel....

Embedded RFID made simple

Example:

HOST=>C1:

Cl=>HOST:

0x22
0x02
0x0A
0x00

0x00
0x22
0x00

6.2.4 Write value (0x23)

This command should be used to write a value to the tag. It takes as arguments the block number where the value
should be stored, the key A or B parameter, the key number in key storage, a value (signed 32-bit LSB first) as 4 bytes,

— MF_READ_VALUE

- block number 2

- key A should be selected from key storage

- first key should be selected from key storage

- ACK byte

related command code MF_READ_BLOCK
OXOO 0x00 0x01 - value
0x01 - address byte

and an address byte (unsigned 8-bit value).

Command description
Argument Size | Value | Description
Command ID 1 0x23 | MF_WRITE_VALUE
Block number 1 X
X 0x0A — Key A should be selected from key storage
S ETEIIE ! 0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
Value 4 X Signed 32-bit value (LSB first)
Address 1 X Address byte
Response description
ACK 1 0x00
Command ID 1 0x23 | MF_WRITE_VALUE
Example:
HOST=>Cl: 0x23 - MF_WRITE_VALUE
0x02 - block number 2
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage
0x00 0x00 0x00 Ox01 - value
0x01 - address byte
C1=>HOST: 0x00 - ACK byte

0x23 - related command code MF_WRITE_BLOCK

6.2.5 Increment/decrement value (0x24)

This command should be used to increment or decrement a value stored in the tag memory. It takes as arguments the
block number where the value is stored, the key A or B parameter, the key number in key storage, value (signed 32-

bit LSB first) as 4 bytes to increment or decrement, and the increment/decrement flag.

52

D
Eccel....

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 0x24 | MF_INCREMENT_VALUE
Block number 1 X

0x0A — Key A should be selected from key storage
G U [T ! X 0x0B — Ke:// B should be selected from kezll storage
Key number 1 0-4 | Key number in key storage
Delta value 4 X Signed 32-bit value (LSB first)
Increment/Decrement 1 X 0x00 — Decrement by delta value

0x01 — Increment by delta value

Response description
ACK 1 0x00
Command ID 1 0x24 | MF_INCREMENT_VALUE
Example:

HOST=>C1l: 0x24 MF_INCREMENT_VALUE
0x02 - block number 2
Ox0A - key A should be selected from key storage
0x00 - first key should be selected from key storage
0x00 0x00 0x00 0x01 - delta value
0x01 - 1increment flag

C1=>HOST: 0x00 - ACK byte
0x24 - related command code MF_INCREMENT_BLOCK

6.2.6 Transfer value (0x25)

This command should be used to transfer a value from a volatile register on the tag to the block being addressed. It
takes as arguments the block number where the value should be stored, the key A or B parameter, the key number in
key storage.

Command description

Argument Size | Value | Description
Command ID 1 0x25 | MF_TRANSFER_VALUE
Block number 1 X

0x0A — Key A should be selected from key storage
0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
Response description

Key A/B parameter 1 X

ACK 1 0x00
Command ID 1 0x25 | MF_TRANSFER_VALUE
Example:

HOST=>C1l: 0x25

MF_TRANSFER_VALUE

0x02 - block number 2
Ox0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

53

]
Eccel.... .

509001
Embedded RFID made simple Certificate No. GB2005225

C1=>HOST: 0x00 - ACK byte
0x25 - related command code MF_TRANSFER_BLOCK

6.2.7 Restore value (0x26)

This command should be used to restore a value to a volatile register on the tag from the block being addressed. It
takes as arguments the block number where the value is stored, the key A or B parameter, key number in key storage.

Command description
Argument Size | Value | Description
Command ID 1 0x26 | MF_RESTORE_VALUE
Block number 1 X

0x0A — Key A should be selected from key storage

a7 U [T ETEED ! X 0x0B — Ke:// B should be selected from ke\\// storage
Key number 1 0-4 | Key number in key storage

Response description
ACK 1 0x00
Command ID 1 0x26 | MF_ RESTORE VALUE

Example:

HOST=>C1l: 0x26 - MF_RESTORE_VALUE
0x02 - block number 2
Ox0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

C1=>HOST: 0x00 - ACK byte
0x26 - related command code MF_RESTORE_BLOCK

6.2.8 Transfer-Restore value (0x27)

This command performs a Restore-Transfer command sequence on the tag. It takes as arguments the block number
to be decremented, the block number to be transferred to, the key A or B parameter, the key number in key storage.
This command has the same functionality as the read value command, except that it can be used on a block which is
corrupted — it tries to recover data from a corrupted block. The format of a value-type block allows for some bits to be
corrupted and it still be possible to read and recover the proper value

Command description

Argument Size | Value | Description

Command ID 1 0x27 | MF_TRANSFER_RESTORE_VALUE
Source block number 1 X Block number to be decremented
DS 5 1 X Block number to be transferred to
number

0xO0A — Key A should be selected from key storage
0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
Response description

Key A/B parameter 1 X

ACK \ | ox00 |

[uny

54

S
Eccel...."

Embedded RFID made simple

| command ID | 1 [0x27 | MF_TRANSFER_RESTORE _VALUE
Example:

HOST=>C1l: 0x27 - MF_TRANSFER_RESTORE_VALUE
0x02 - source block number 2
0x03 - destination block number 3
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

C1=>HOST: 0x00 - ACK byte
0x27 - related command code MF_TRANSFER_RESTORE_BLOCK

6.3 MIFARE Ultralight commands

This set of commands should be performed on MIFARE Ultralight tags.

6.3.1 Read page (0x40)

The read page command should be used to read data stored in tag pages. It takes as arguments the page number of
the first page to be read, and the number of pages to be read. The returned ACK answer contains data read from the
specified tag memory. The number of bytes of this data is MIFARE Ultralight page size (4) multiplied by the number of
pages to be read.

Command description

Argument Size | Value | Description
Command ID 1 0x40 | MFU_READ_PAGE
Page number 1 X
Number of pages 1 Y
Response description
ACK 1 0x00
Command ID 1 0x40 | MFU_READ_PAGE
Read data via | xxx Byte§ r(.ead from the tag. Number of bytes is number of requested pages
multiplied by 4.
Example:

HOST=>C1l: 0x40
0x02
0x02

MFU_READ_PAGE
page number 2
two pages to read

C1=>HOST: 0x00 - ACK byte
0x40 - related command code MFU_READ_PAGE
0x31 0x35 0x3a 0x33 0x35 O0x3a 0x30 0x33 - 8 bytes result

55

D

E C c e ' Technology Ltd
a

50 9001
ficste No. GB2005225

Embedded RFID made simple

6.3.2 Write page (0x41)

The write page command should be used to write data to the tag. It takes as arguments the page number of the first
page to write, the number of pages to write, and the bytes to be written. The number of bytes to be written must be
exactly the number of pages to write multiplied by 4.

Command description

Argument Size | Value | Description
Command ID 1 0x41 | MFU_WRITE_PAGE
Page number 1 X
Number of pages 1 Y
Bytes to write V¥4 XXX Byte§ tg write. Number of this bytes must be number of requested pages
multiplied by 4.
Response description
ACK 1 0x00
Command ID 1 0x41 | MFU_WRITE_PAGE
Example:
HOST=>Cl: 0Ox41] - MFU_WRITE_PAGE
0x02 - page number 2
0x02 - two pages to write
0x31 0x35 O0x3a 0x33 0x35 0x3a 0x30 0x33 - 32 bytes to write
C1=>HOST: 0x00 - ACK byte

0x41 - related command code MFU_WRITE_PAGE

6.3.3 Get version (0x42)

This command requests a version string from the TAG. The returned ACK answer consists of 8-bytes containing the
version information defined by the NXP standard. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 0x42 | MFU_GET_VERSION
Response description

ACK 1 0x00

Command ID 1 0x42 | MFU_GET_VERSION

Version bytes 8 X Version bytes from the TAG

Example:

HOST=>C1:
C1=>HOST:

0x42 - MFU_GET_VERSION

0x00 - ACK byte
0x42 - related command code MFU_GET_VERSION
0x31 0x35 0Ox3a 0x33 0x35 Ox3a 0x30 0x33 - version bytes

56

N

ol
C c e ' T i
E fechnology Ltd

Embedded RFID made simple

6.3.4 Read signature (0x43)

This command requests a version string from the device. The returned ACK answer contains 32-bytes with ECC
signature defined by the NXP standard. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 0x43 | MFU_READ_SIGNATURE
Response description

ACK 1 0x00

Command ID 1 0x43 | MFU_READ_SIGNATURE

Version bytes 32 X Signature bytes from the TAG

Example:
HOST=>C1:
C1=>HOST:

6.3.5 Write signature (0x44)

0x43 - MFU_READ_SIGNATURE

0x00 - ACK byte

0x43 - related command code MFU_READ_SIGNATURE

0x01 Ox2e 0x41 0x22 0x43 Ox11l O0x8e 0x20

0x31 0x38 0x20 0x32 0x30 O0x31 0x39 0x41

0x81 0x23 0x42 0x28 0x33 0x01 Ox8e 0x72

0x31 0x35 O0x3a 0x33 0x35 0x3a 0x30 0x33 - signature bytes

This command writes the signature information to the MIFARE Ultralight Nano TAG. It takes as arguments relative page
location of the signature part to be written and four bytes of signature value to be written.

Command description
Argument Size | Value | Description
Command ID 1 0x44 | MFU_WRITE_SIGNATURE
Relative page address 1 X Relative page location of the signature part to be written
SO ITG 4 XXX Bytes of signature value to be written to the specified relative page
address
Response description
ACK 1 0x00
Command ID 1 0x44 | MFU_WRITE_ SIGNATURE
Example:
HOST=>C1l: 0x44 - MFU_WRITE_SIGNATURE
0x00 - relative page number 0O
0x35 0x3a 0x30 0x33 - 4 bytes to write
C1=>HOST: 0x00 - ACK byte

0x44 - related command code MFU_WRITE_SIGNATURE

57

D
Eccel.... %

150 9001
Embedded RFID made simple Certificate No. GB2005225

6.3.6 Lock signature (0x45)

This command locks the signature temporarily or permanently based on the information provided in the API. The
locking and unlocking of the signature can be performed using this command if the signature is not locked or temporary
locked. If the signature is permanently locked, then unlocking can’t be done.

Command description

Argument Size | Value | Description

Command ID 1 0x45 | MFU_LOCK_SIGNATURE
0x00 — Unlock

Lock mode 1 X 0x01 — Lock

0x02 — Permanent lock
Response description

ACK 1 0x00
Command ID 1 0x45 | MFU_LOCK_SIGNATURE
Example:

HOST=>C1l: 0x45
0x02

MFU_LOCK_SIGNATURE
permanent lock

Cl=>HOST: 0x00
0x45

ACK byte
related command code MFU_LOCK_SIGNATURE

6.3.7 Read counter (0x46)

This command should be used to read a counter from the TAG. It takes as arguments the counter number. The returned
ACK response contains a value as a signed 24-bit value (LSB first).

Command description

Argument Size | Value | Description

Command ID 1 0x46 | MFU_READ_COUNTER

Counter number 1 0-2 | Counter number

Response description

ACK 1 0x00

Command ID 1 0x46 | MFU_READ_COUNTER

Counter value 3 X Unsigned 24-bit value, LSB first
Example:

HOST=>C1l: 0x46
0x01

MFU_READ_COUNTER
counter number

C1=>HOST: 0x00 - ACK byte
0x46 - related command code MFU_READ_COUNTER
0x00 0x00 0x01 - value

58

Eccel...."

Embedded RFID made simple

6.3.8 Increment counter (0x47)

This command should be used to increment a counter stored in the tag memory. It takes as arguments the counter
number and increment value (24-bit value LSB first) as 3 bytes.

Command description

Argument Size | Value | Description

Command ID 1 0x47 | MFU_INCREMENT_COUNTER

Counter number 1 0-2 | Counter number

Increment value 3 X Unsigned 24-bit value (LSB first)

Response description

ACK 1 0x00

Command ID 1 0x47 | MFU_INCREMENT_COUNTER
Example:

HOST=>C1l: Ox47 - MFU_INCREMENT_COUNTER
0x02 - block number 2
0x00 0x00 0x01 - increment value

C1=>HOST: 0x00 - ACK byte
0x47 - related command code MFU_INCREMENT_COUNTER

6.3.9 Password auth (0x48)

This command tries to authenticate the tag using the chosen password. It takes as an argument a password as four
bytes. The returned ACK response contains two bytes of password acknowledge (PACK).

Command description

Argument Size | Value | Description

Command ID 1 0x48 | MFU_PASSWORD_AUTH

Counter number 4 X 4-bytes password

Response description

ACK 1 0x00

Command ID 1 0x48 | MFU_PASSWORD_AUTH

PACK 2 X Password acknowledge bytes
Example:

HOST=>Cl: 0x48 - MFU_PASSWORD_AUTH
0x00 0x00 0x00 0x00 - password

C1=>HOST: 0x00 - ACK byte
0x48 - related command code MFU_PASSWORD_AUTH
0x00 0x00 - password acknowledge bytes

59

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

6.3.10 Ultralight-C authenticate (0x49)

This command tries to authenticate the MIFARE Ultralight-C tag using the password stored in the key storage. It takes
as an argument one byte with the key number in the key storage.

Command description

Argument Size | Value | Description
Command ID 1 0x49 | MFUC_AUTHENTICATE
Key number 1 0-4 | Key number in key storage
Response description
ACK 1 0x00
Command ID 1 0x49 | MFUC_AUTHENTICATE
Example:

HOST=>C1l: 0x49
0x00

MFUC_AUTHENTICATE
key number

Cl=>HOST: 0x00
0x49

ACK byte
related command code MFUC_AUTHENTICATE

6.3.11 Check Tearing Event (0x4A)

The Check Tearing Event command takes as arguments one byte with the counter number. This command checks
whether there was a tearing event in the counter. The returned ACK response contains result byte. The value ‘Ox00’ is
returned if there has been no tearing event, and ‘Ox01’ is returned if a tearing event occurred. Please refer to the NXP
documentation for more information.

Command description

Argument Size | Value | Description
Command ID 1 0x49 | MFU_CHECKEVENT
Counter number 1 0-2 | Counter number
Response description
ACK 1 0x00
Command ID 1 0x49 | MFU_CHECKEVENT
Example:

HOST=>C1l: 0x49
0x00

MFU_CHECKEVENT
counter number

C1=>HOST: 0x00 - ACK byte
0x49 - related command code MFU_CHECKEVENT
0x01 - tearing event occurred

60

S
Eccel...."

Embedded RFID made simple

6.4 MIFARE Desfire commands

This set of commands should be performed on MIFARE Desfire tags.

6.4.1 Get version (0x60)

This command requests version information from the tag. The returned ACK answer contains 28-bytes with version
information.

Command description

Argument Size | Value | Description
Command ID 1 0x60 | MFDF_GET_VERSION
Response description
ACK 1 0x00
Command ID 1 0x60 | MFDF_GET_VERSION
Read data 28 XXX | Version bytes read from the tag
Example:

HOST=>Cl: 0Ox60 - MFDF_GET_VERSION

C1=>HOST: 0x00 - ACK byte
0x60 - related command code MFDF_GET_VERSION

0x01 Ox2e 0x41 0x22 0x43 0x11l O0x8e 0x20
0x31 0x38 0x20 0x32 0x30 Ox31 0x39 0x41
0x81 0x23 0x42 0x28 0x33 Ox01 Ox8e 0x72
0x31 0x35 Ox3a 0x33 - 28 bytes result

6.4.2 Select application (0x61)

This command requests select application operation on the tag. Takes as argument 3-byes containing AID.

Command description

Argument Size | Value | Description
Command ID 1 0Ox61 | MFDF_GET_VERSION
AID 3 X Application ID
Response description
ACK 1 0x00
Command ID 1 0Ox61 | MFDF_GET_VERSION
Example:

HOST=>C1l: 0x61 - MFDF_SELECT_APP
0x01 0x02 0x03 - 3 bytes AID

C1=>HOST: 0x00 - ACK byte
0x61 - related command code MFDF_SELECT_APP

61

Eccel...."

Embedded RFID made simple

6.4.3 List application IDs (0x62)

This command requests lists application IDs from the TAG. The returned ACK answer contains the bytes with
application IDs. Every ID is 3-bytes long.

Command description

Argument Size | Value | Description
Command ID 1 0x62 | MFDF_LIST_APP_IDS
Response description
ACK 1 0x00
Command ID 1 0x62 | MFDF_LIST_APP_IDS
Application IDs X*3 X Bytes with applications IDs
Example:

HOST=>Cl: 0x62 - MFDF_LIST_APP_IDS

C1=>HOST: 0x00 - ACK byte
0x62 - related command code MFDF_LIST_APP_IDS
0x00 0x00 0x01 - first AID
OxXAA OxBB 0OxCC - second AID
0x55 0x55 Ox55 - third AID

6.4.4 List files IDs (0x63)

This command returns the file IDs of all active files within the currently selected application. The returned ACK answer
contains the bytes with file IDs. Every file ID is 3-bytes long.

Command description

Argument Size | Value | Description
Command ID 1 0x63 | MFDF_LIST_FILE_IDS
Response description
ACK 1 0x00
Command ID 1 0x63 | MFDF_LIST_FILE_IDS
Application IDs X*3 X Bytes with files IDs
Example:

HOST=>C1l: 0x63

MFDF_LIST_FILE_IDS

C1=>HOST: 0x00 - ACK byte
0x63 - related command code MFDF_LIST_FILE_IDS
0x00 0x00 0x01 - first file ID
OxXAA OxBB 0xCC - second file ID
0x55 0x55 0x55 - third file ID

62

M
Eccel.... -

s 50501
Embedded RFID made simple Centificate No. GB2005225

6.4.5 Authenticate (0x64)

This command tries to authenticate the MIFARE Desfire using the password stored in the key storage. It takes as an
argument one byte with the key number in the key storage, and one byte with the key number on the card. This
command can be used with DES and 2K3DES keys.

Command description

Argument Size | Value | Description

Command ID 1 0x64 | MFDF_AUTHENTICATE

Key number in storage 1 0-4 | Key number in key storage

Key number on card 1 X Key number on card
Response description

ACK 1 0x00

Command ID 1 0x64 | MFDF_AUTHENTICATE

Example:

HOST=>Cl: Ox64 - MFDF_AUTHENTICATE
0x01 - key number 1in key storage
0x00 - key number on the card

Cl=>HOST: 0x00
Oxo64

ACK byte
related command code MFDF_AUTHENTICATE

6.4.6 Authenticate ISO (0x65)

This command tries to authenticate the MIFARE Desfire tag in 1ISO CBS send mode using the key stored in the key
storage. It takes as an argument one byte with the key number in the key storage, and one byte with the key number
on the card. This command can be used with DES, 3DES and 3K3DES keys.

Command description

Argument Size | Value | Description

Command ID 1 0x65 | MFDF_AUTHENTICATE_ISO

Key number 1 0-4 | Key number in key storage

Key number on card 1 X Key number on card
Response description

ACK 1 0x00

Command ID 1 0x65 | MFDF_AUTHENTICATE_ISO

Example:

HOST=>C1l: 0x65
0x01
0x00

MFDF_AUTHENTICATE_ISO
key number in key storage
key number on the card

Cl=>HOST: 0x00
0x65

ACK byte
related command code MFDF_AUTHENTICATE_ISO

63

M
Eccel.... -

Embedded RFID made simple Certificate No. GB2005225

6.4.7 Authenticate AES (0x66)

This command tries to authenticate the MIFARE Desfire using the key stored in the key storage, and one byte with the
key number on the card. It takes as an argument one byte with the key number in the key storage. This command can
be used with AES128 keys.

Command description

Argument Size | Value | Description

Command ID 1 0x66 | MFDF_AUTHENTICATE_ISO

Key number 1 0-4 | Key number in key storage

Key number on card 1 X Key number on card
Response description

ACK 1 0x00

Command ID 1 0x66 | MFDF_AUTHENTICATE_ISO

Example:

HOST=>Cl: Ox66 - MFDF_AUTHENTICATE_AES
0x01 - key number in key storage
0x00 - key number on the card

Cl=>HOST: 0x00
0x66

ACK byte
related command code MFDF_AUTHENTICATE_AES

6.4.8 Create application (0x67)

This command tries to create application on the tag. It takes three arguments: 3-bytes of application ID, the
keySettings1 byte and the keySettings2 byte. Please refer to the NXP documentation for more information about key
settings bytes.

Command description

Argument Size | Value | Description

Command ID 1 0x67 | MFDF_CREATE_APP

Application ID 3 X Application ID bytes

Key settings 1 1 X Please refer to the NXP documentation for more information
Key settings 2 1 X Please refer to the NXP documentation for more information

Response description

ACK 1 0x00
Command ID 1 0x67 | MFDF_CREATE_APP
Example:

HOST=>C1l: 0x67 - MFDF_CREATE_APP
0x00 - key number
0x01 0x02 0x03 - application ID
OXED 0x84 - key settings bytes
C1=>HOST: 0x00 - ACK byte
0x67 - related command code MFDF_CREATE_APP

64

Eccel...."

Embedded RFID made simple

6.4.9 Delete application (0x68)

This command tries to delete an application from the tag. It takes one argument with the application ID.

Command description

Argument Size | Value | Description
Command ID 1 0x68 | MFDF_DELETE_APP
Application ID 3 X Application ID bytes
Response description
ACK 1 0x00
Command ID 1 0x68 | MFDF_DELETE_APP
Example:

HOST=>Cl: 0x68 - MFDF_DELETE_APP
0x01 0x02 0x03 - application ID

C1=>HOST: 0x00 - ACK byte
0x68 - related command code MFDF_DELETE_APP

6.4.10 Change key (0x69)

This command tries to change the key for the selected application. It takes three arguments: the old key number from
key storage, the new key number in the key storage and the key number on the card. The key type of the application
keys cannot be changed.

Command description
Argument Size | Value | Description
Command ID 1 0x69 | MFDF_CHANGE_KEY
Old key number 0-4 | Key number in key storage
New key number Key number in key storage
Key number on card X Key number on the card
Response description

[HRNY [N PN
=
IS

ACK 1 0x00
Command ID 1 0x69 | MFDF_CHANGE_KEY
Example:

HOST=>Cl: 0x69 - MFDF_CHANGE_APP
0x00 - old key number
0x01 - new key number
0x00 - key number

C1=>HOST: 0x00 - ACK byte
0x69 - related command code MFDF_CHANGE_APP

6.4.11 Get key settings (Ox6A)

This command gets the key settings bytes from the tag. This command does not require any arguments but an
application must be selected and authorized.

65

Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 Ox6A | MFDF_GET_KEY_SETTINGS
Response description
ACK 1 0x00
Command ID 1 Ox6A | MFDF_GET_KEY_SETTINGS
Key settings 2 X Key settings bytes
Example:

HOST=>Cl: OX6A - MFDF_GET_KEY_SETTINGS

C1=>HOST: 0x00 - ACK byte

Ox6A - related command code MFDF_GET_KEY_SETTINGS

0x01 0x02 - key settings bytes
6.4.12 Change key settings (0x6B)

This command changes the key settings bytes for the selected and authorized application. It takes one argument, 2-

byes long with key settings.

Command description

Argument Size | Value | Description
Command ID 1 0x6B | MFDF_CHANGE_KEY_SETTINGS
New key settings 2 X Key settings bytes
Response description
ACK 1 0x00
Command ID 1 0x6B | MFDF_CHANGE_KEY_SETTINGS
Example:

HOST=>Cl: Ox6B - MFDF_GET_KEY_SETTINGS
0x01 0x02 - key settings bytes

C1=>HOST: 0x00 - ACK byte

Ox6B - related command code MFDF_GET_KEY_SETTINGS

6.4.13 Create standard or backup data file (0x6C)

This command creates a file for the storage of plain unformatted user data within the selected application. It takes

four arguments listed in the table below.

Command description
Argument Size | Value | Description
Command ID 1 0x6C | MFDF_CREATE_DATA_FILE
File number 1 X File number inside application
Access rights 2 X Please refer to the NXP documentation for more information
File size 3 X file size, LSB first
. 0x00 — Standard file
HEIPULE 1 X 0x01 — Backup file

66

N

Eccel...."
Response description
ACK 1 0x00
Command ID 1 0x6B | MFDF_CREATE_DATA_FILE
Example:
HOST=>Cl: Ox6C - MFDF_CREATE_DATA_FILE
0x01 - file number
OXEE OXEE - access rights
0x40 0x00 0x00 - file 64-bytes long
0x01 - backup file
C1=>HOST: 0x00 - ACK byte

0x6C - related command code MFDF_CREATE_DATA_FILE

6.4.14 Write data (0Ox6D)

This command writes data to standard data files or backup data files. It takes three arguments: the file number, the
offset in the file where data should be stored, and the data bytes to be written. To store data on the TAG, a commit

transaction command is required.

Command description
Argument Size | Value | Description
Command ID 1 0x6D | MFDF_WRITE_DATA
File number 1 X File number inside application
File offset 3 X file offset, 3-bytes LSB value
Data N X Data bytes to write
Response description
ACK 1 0x00
Command ID 1 0x6D | MFDF_WRITE_DATA
Example:
HOST=>Cl: Ox6D - MFDF_WRITE_DATA
0x01 - file number
0x00 0x00 0x00 - zero offset
0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data
C1=>HOST: 0x00 - ACK byte

0Ox6D - related command code MFDF_WRITE_DATA

6.4.15 Read data (Ox6E)

This command reads data from standard data files or backup data files. It takes three arguments: the file number, the
offset in the file where data is stored, and the number of bytes to be read. The returned ACK response contains the
data that has been read.

Command description
Argument Size | Value | Description
Command ID 1 Ox6E | MFDF_READ_DATA
File number 1 X File number inside application

67

N

Eccel....’
File offset 3 X file offset, 3-bytes LSB value
Data length 3 X Read data length, 3-bytes LSB value
Response description
ACK 1 0x00
Command ID 1 Ox6E | MFDF_READ_DATA
Example:
HOST=>Cl: OX6E - MFDF_READ_DATA
0x01 - file number
0x00 0x00 0x00 - zero offset
0x07 0x00 0x00 - seven bytes to read
C1=>HOST: 0x00 - ACK byte
Ox6E - related command code MFDF_READ_DATA
0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data

6.4.16 Create value file (Ox6F)

This command creates files for the storage and manipulation of 32bit signed integer values within an existing

application on the TAG. It takes seven arguments listed in the table below.

Command description

Argument Size | Value | Description
Command ID 1 Ox6F | MFDF_CREATE_VALUE_FILE
File number 1 X File number inside application
Access rights 2 X Please refer to the NXP documentation for more information
Low limit 4 X Low limit as 4-bytes signed value, LSB first
Up limit 4 X Up limit as 4-bytes signed value, LSB first
Initial value 4 X Initial value as 4-bytes signed value, LSB first
Get free enabled 1 X Please refer to the NXP documentation for more information
Limit credited 1 X Please refer to the NXP documentation for more information
Response description
ACK 1 0x00
Command ID 1 Ox6F | MFDF_CREATE_VALUE_FILE
Example:
HOST=>C1l: Ox6F - MFDF_CREATE_VALUE_FILE
0x02 - file number
OXEE OXEE - access rights
0x00 0x00 0x00 Ox00 - Tow 1imit
0x80 0x00 0x00 Ox00 - up limit
0x00 0x00 0x00 Ox00 - initial value
0x01 - get free enabled
0x01 - Timited credit
C1=>HOST: 0x00 - ACK byte
Ox6F - related command code MFDF_CREATE_VALUE_FILE

68

Eccel...."

Embedded RFID made simple

6.4.17 Get value (0x70)

This command returns the value stored in a value file on the TAG. The returned ACK response contains 4 bytes of
signed value, LSB-first.

Command description

Argument Size | Value | Description

Command ID 1 0x70 | MFDF_GET_VALUE

File number 1 X File number inside application

Response description

ACK 1 0x00

Command ID 1 0x70 | MFDF_GET_VALUE

Value 4 X 4 bytes signed value, LSB first
Example:

HOST=>C1l: 0x70
0x02

MFDF_GET_VALUE
file number

C1=>HOST: 0x00 - ACK byte
0x70 - related command code MFDF_GET_VALUE
0x05 0x00 0x00 0x00 - 4 bytes signed value, LSB first

6.4.18 Credit file (0x71)

This command increases a value stored in a value file on the TAG.

Command description

Argument Size | Value | Description
Command ID 1 0x71 | MFDF_CREDIT
File number 1 X File number inside application
Credit value 4 X 4 bytes signed value, LSB first
Response description

ACK 1 0x00
Command ID 1 0x71 | MFDF_CREDIT

Example:

HOST=>C1l: Ox71 - MFDF_CREDIT
0x02 - file number
0x05 0x00 0x00 O0x00 - 4 bytes signed value, LSB first

C1=>HOST: 0x00 - ACK byte
0x71 - related command code MFDF_CREDIT

6.4.19 Limited credit file (0x72)

This command allows a limited increase of a value stored in a value file without having full credit permissions to the
file. Please refer to the NXP documentation for more information.

69

Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description

Command ID 1 0x72 | MFDF_LIMITED_CREDIT

File number 1 X File number inside application

Credit value 4 X 4 bytes signed value, LSB first

Response description

ACK 1 0x00

Command ID 1 0x72 | MFDF_ LIMITED_CREDIT
Example:

HOST=>Cl: Ox72 - MFDF_LIMITED_CREDIT
0x02 - file number
0x05 0x00 0x00 0x00 - 4 bytes signed value, LSB first

C1=>HOST: 0x00 - ACK byte
0x72 - related command code MFDF_ LIMITED_CREDIT

6.4.20 Debit file (0x73)

This command decreases a value stored in a value file on the TAG.

Command description

Argument Size | Value | Description
Command ID 1 0x73 | MFDF_DEBIT
File number 1 X File number inside application
Credit value 4 X 4 bytes signed value, LSB first
Response description

ACK 1 0x00
Command ID 1 0x73 | MFDF_DEBIT

Example:

HOST=>Cl: 0x73 - MFDF_DEBIT
0x02 - file number
0x05 0x00 0x00 0x00 - 4 bytes signed value, LSB first

C1=>HOST: 0x00 - ACK byte
0x73 - related command code MFDF_DEBIT

6.4.21 Create record file (0x74)
This command creates files for multiple storage of structurally similar data within an existing application. If the cyclic

flag is 0x00, then further writing is not possible unless it is cleared. If the cyclic flag is set to 0x01, then the new record
overwrites the oldest record.

70

D
Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 0x74 | MFDF_CREATE_RECORD_FILE
File number 1 X File number inside application
Access rights 2 X Please refer to the NXP documentation for more information
Record size 2 X Record size, 16-bits LSB value
Number of records 2 X Number of records, 16-bits LSB value
X If cyclic file is full:

Cyclic flag 1 0x00 - further writing is not possible unless it is cleared
0x01 - the new record overwrites oldest record
Response description

ACK 1 0x00
Command ID 1 | 0x74 | MFDF_CREATE_RECORD_FILE
Example:

HOST=>Cl: 0x74 - MFDF_CREATE_RECORD_FILE
0x03 - file number
OXEE OXEE - access rights
0x08 0x00 - 8-bytes for every record
0x40 0x00 - 64 records
0x01 - cyclic flag

C1=>HOST: 0x00 - ACK byte
0x74 - related command code MFDF_CREATE_VALUE_FILE

6.4.22 Write record (0x75)

This command writes data to a record file. It takes two arguments: the file number and the data bytes to be written.
To store data on the TAG, a commit transaction command is required.

Command description

Argument Size | Value | Description

Command ID 1 0x75 | MFDF_WRITE_RECORD_DATA

File number 1 X File number inside application

Data N X Data bytes to write

Response description

ACK 1 0x00

Command ID 1 0x75 | MFDF_WRITE_DATA
Example:

HOST=>Cl: Ox75 - MFDF_WRITE_DATA

0x01 - file number

0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data
C1=>HOST: 0x00 - ACK byte

0x75 - related command code MFDF_WRITE_RECORD_DATA

71

Eccel...."

Embedded RFID made simple

6.4.23 Read record (0x76)

This command reads data from a record file. It takes three arguments: the file number, the record number, and the
number of bytes to be read. The returned ACK response contains the data that has been read.

Command description

Argument Size | Value | Description
Command ID 1 0x76 | MFDF_READ_RECORD
File number 1 X File number inside application
Record number 2 X Record number, 2-bytes LSB value
Data length 2 X Read data length, 2-bytes LSB value
Response description
ACK 1 0x00
Command ID 1 0x76 | MFDF_READ_RECORD
Example:

HOST=>C1l: 0Ox76 - MFDF_READ_RECORD
0x01 - file number
0x00 0x01 - record number
0x08 0x00 - eighth bytes to read
C1=>HOST: 0x00 - ACK byte
0x76 - related command code MFDF_READ_RECORD
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data

6.4.24 Clear records (0x77)

This command resets cyclic or lineal record files. It takes as an argument the file number.

Command description

Argument Size | Value | Description
Command ID 1 0x77 | MFDF_CLEAR_RECORDS
File number 1 X File number inside application
Response description
ACK 1 0x00
Command ID 1 0x77 | MFDF_CLEAR_RECORDS
Example:

HOST=>C1l: Ox77
0x01

MFDF_CLEAR_RECORDS
file number

Cl=>HOST: 0x00
0x77

ACK byte
related command code MFDF_CLEAR_RECORDS

6.4.25 Delete file (0x78)

This command permanently deactivates a file within the file directory of the currently selected application. It takes as
an argument the file number.

72

N

Eccel...."
Command description
Argument Size | Value | Description
Command ID 1 0x78 | MFDF_DELETE_FILE
File number 1 X File number inside application
Response description
ACK 1 0x00
Command ID 1 0x78 | MFDF_DELETE_FILE
Example:

HOST=>C1l: 0x78 MFDF_DELETE_FILE
0x01 - file number

C1l=>HOST: 0x00
0x78

ACK byte
related command code MFDF_DELETE_FILE

6.4.26 Get free memory (0x79)

This command returns a value corresponding to the amount of free memory available on the TAG. No arguments are
required. The available memory is returned as a 4 byte unsigned LSB value.

Command description

Argument Size | Value | Description

Command ID 1 0x79 | MFDF_GET_FREE_MEM
Response description

ACK 1 0x00

Command ID 1 | 0x79 | MFDF_GET_FREE_MEM

Free memory 4 X Free memory, 4-bytes, LSB first

Example:

HOST=>Cl: O0x79 - MFDF_GET_FREE_MEM

C1=>HOST: 0x00 - ACK byte
0x79 - related command code MFDF_GET_FREE_MEM
0x00 0x08 0x00 0x00 - free memory

6.4.27 Format memory (0x7A)

This command releases user memory in the TAG. No arguments are required.

Command description

Argument Size | Value | Description
Command ID 1 0x7A | MFDF_FORMAT
Response description
ACK 1 0x00
Command ID 1 0x7A | MFDF_FORMAT

73

D &
Eccel....

Embedded RFID made simple

Example:

HOST=>Cl: OXx7A - MFDF_FORMAT

C1=>HOST: 0x00 - ACK byte
0x7A - related command code MFDF_FORMAT

6.4.28 Commit transaction (Ox7B)

This command validates all previous write access on backup data files, value files and record files within one
application. No arguments are required.

Command description

Argument Size | Value | Description

Command ID 1 0x7B | MFDF_COMMIT_TRANSACTION
Response description

ACK 1 0x00

Command ID 1 0x7B | MFDF_COMMIT_TRANSACTION

Example:

HOST=>Cl: Ox7B - MFDF_COMMIT_TRANSACTION

C1=>HOST: 0x00 - ACK byte
0x7B - related command code MFDF_COMMIT_TRANSACTION
6.4.29 Abort transaction (0x7C)

This command invalidates all previous write access on backup data files, value files and record files within one
application. No arguments are required.

Command description

Argument Size | Value | Description

Command ID 1 0x7C | MFDF_ABORT_TRANSACTION
Response description

ACK 1 0x00

Command ID 1 0x7C | MFDF_ABORT_TRANSACTION

Example:

HOST=>Cl: Ox7C - MFDF_ABORT_TRANSACTION

C1=>HOST: 0x00 - ACK byte
0x7C - related command code MFDF_ABORT_TRANSACTION

74

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

6.5 ICODE (1ISO15693) commands

This set of commands should be performed on ICODE (1SO15693) TAGs.

6.5.1 Inventory start (0x90)

This command starts the inventory procedure on ISO 15693 TAGs. It activates the first TAG detected during collision
resolution. If no TAGs are detected, then an error with a timeout flag is returned. This command takes one argument
AFI - Application Family Identifier. Please refer to the NXP documentation for more information.

If any TAG(s) is/are detected, then the command returns an ACK message containing the UID (8-bytes), a DSFID byte,
and 1-byte which contains information about any other tags detected in the field that are available to be read.

Because GET_TAG_COUNT command is limited to 5 tags only, ICODE_INVENTORY_START/ICODE_INVENTORY_NEXT
commands should be used to detect all ICODE tags within range of the antenna.

Command description

Argument Size | Value | Description
Command ID 1 0x90 | ICODE_INVENTORY_START
AFI 1 X Application Family Identifier
Response description
ACK 1 0x00
Command ID 1 0x90 | ICODE_INVENTORY_START
uiD 8 XXX | Unique identifier, inverted order
DSFID 1 X Data Storage Format Identifier
More cards flag 1 X 0x00 — no more cards in range of antenna

0x01 — more cards in range of antenna

Example:

HOST=>C1l: 0x90 - ICODE_INVENTORY_START
0x00 - Application Family Identifier

C1=>HOST: 0x00 - ACK byte
0x90 - related command code ICODE_INVENTORY_START
0x04 Ox8F Ox7F Ox0A 0x01 Ox24 0x16 OxEO - UID
0x00 - DSFID
0x01 - more cards in range of antenna

6.5.2 Inventory next (0x91)

This command should be used to continue the inventory procedure on ISO 15693 TAGs. It activates the next TAG that
was detected during the collision resolution. It takes one argument, AFI - Application Family Identifier. Please refer to
the NXP documentation for more information. If a TAG or multiple tags is/are detected, then this command returns
an ACK message containing the UID (8-bytes), a DSFID byte, and 1-byte which contains information about any other
tags detected in the field that are available to be read.

75

S
Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 0x91 | ICODE_INVENTORY_NEXT
AFI 1 X Application Family Identifier
Response description
ACK 1 0x00
Command ID 1 0x91 | ICODE_INVENTORY_NEXT
uID 8 XXX | Unique identifier
DSFID 1 X Data Storage Format Identifier
e e R 1 X 0x00 — no more cards in range of antenna

0x01 — more cards in range of antenna

Example:

HOST=>C1l: 0x91
0x00

C1=>HOST: 0x00 - ACK byte
0x91 - related command code ICODE_INVENTORY_NEXT
0x04 Ox8F Ox7F Ox0A 0x01 0Ox24 0x16 OxEO - UID
0x00 - DSFID
0x00 - no more cards available for reading

TICODE_INVENTORY_NEXT
Application Family Identifier

6.5.3 Stay quiet (0x92)

This command performs an ISO15693 Stay Quiet command to the selected TAG. When the tag receives the Stay quiet
command, it enters the quiet state and will not send back a response. The TAG exits the quiet state upon the execution
of a reset (power off) or the command ICODE_INVENTORY_START. Please refer to the NXP documentation for more
information.

Command description

Argument Size | Value | Description

Command ID 1 0x92 | ICODE_STAY_QUIET
Response description

ACK 1 0x00

Command ID 1 0x92 | ICODE_STAY_QUIET

Example:

HOST=>C1l: 0x92 - ICODE_STAY_QUIET

C1=>HOST: 0x00 - ACK byte
0x92 - related command code ICODE_STAY_QUIET

6.5.4 Read block (0x93)

The read block command should be used to read data stored in TAG blocks. It takes as arguments the block number of
the first block to be read, and the number of blocks to be read. The returned ACK answer contains data read from the

76

S
Eccel...."

Embedded RFID made simple

specified tag memory. The number of bytes of this data is ICODE block size (4) multiplied by the number of blocks to
be read.

Command description

Argument Size | Value | Description

Command ID 1 0x93 | ICODE_READ_BLOCK

Block number 1 X

Block count 1 N Number of block to read

Response description

ACK 1 0x00

Command ID 1 0x93 | ICODE_READ_BLOCK

Read data 4*N | XXX | Bytesread from the tag.
Example:

HOST=>C1l: 0x93
0x02
0x01

ICODE_READ_BLOCK
bTock number 2
1 block to read

C1=>HOST: 0x00 - ACK byte
0x93 - related command code ICODE_READ_BLOCK
0x35 0x3a 0x30 0x33 - 4 bytes block data

6.5.5 Write block (0x94)

The write block command should be used to write data to the tag. It takes as arguments the block number of the first
block to write, the number of blocks to write, and the bytes to be written. The number of bytes to be written must be
exactly the number of blocks to write multiplied by 4.

Command description

Argument Size | Value | Description

Command ID 1 0x94 | ICODE_WRITE_BLOCK

Block number 1 X

Block count 1 N

Data to write 4*N X 4-bytes data to write

Response description

ACK 1 0x00

Command ID 1 0x94 | ICODE_WRITE_BLOCK
Example:

HOST=>C1l: 0x94 ICODE_WRITE_BLOCK
0x02 - block number 2
0x01 - block count 1
0x35 0x3a 0x30 0x33 - 4 bytes to write

C1=>HOST: 0x00 - ACK byte
0x94 - related command code ICODE_WRITE_BLOCK

77

Eccel...."

Embedded RFID made simple

6.5.6 Lock block (0x95)

This command performs a lock block command. Once it receives the lock block command, the TAG permanently locks
the requested block. The command takes a one-byte argument representing the block number to be locked.

Command description

Argument Size | Value | Description
Command ID 1 0x95 | ICODE_LOCK_BLOCK
Block number 1 X

Response description
ACK 1 0x00
Command ID 1 0x95 | ICODE_LOCK_BLOCK
Example:

HOST=>C1l: 0x95
0x02

ICODE_LOCK_BLOCK
bTock number 2

Cl=>HOST: 0x00
0x95

ACK byte
related command code ICODE_LOCK_BLOCK

6.5.7 Write AFl (0x96)

This command performs a write to Application Family Identifier value inside the TAG memory. The command takes a
one-byte argument representing the AFl value.

Command description

Argument Size | Value | Description
Command ID 1 0x96 | ICODE_WRITE_AFI
AFl value 1 X

Response description
ACK 1 0x00
Command ID 1 0x96 | ICODE_WRITE_AFI
Example:

HOST=>C1l: 0x96
OxAA

ICODE_WRITE_AFI
new Application Family Identifier value

Cl=>HOST: 0x00
0x96

ACK byte
related command code ICODE_WRITE_AFI

6.5.8 Lock AFl (0x97)

This command performs a Lock AFl command on the TAG. When it receives the lock AFl request, the TAG locks the
AFl value permanently into its memory.

Command description
Argument Size | Value | Description
Command ID 1 0x97 | ICODE_LOCK_AFI

78

Eccel...."

Embedded RFID made simple

Response description

ACK 1 0x00
Command ID 1 0x97 | ICODE_LOCK_AFI
Example:

HOST=>Cl: 0x96 - ICODE_LOCK_AFI

C1=>HOST: 0x00 - ACK byte
0x96 - related command code ICODE_LOCK_AFI

6.5.9 Write DSFID (0x98)

This command performs a write to Data Storage Format Identifier value inside the TAG memory. This command takes
a one-byte argument representing the DSFID value.

Command description

Argument Size | Value | Description
Command ID 1 0x98 | ICODE_WRITE_DSFID
DSFID value 1 X
Response description
ACK 1 0x00
Command ID 1 0x98 | ICODE_WRITE_DSFID
Example:

HOST=>C1l: 0x98
OxAA

ICODE_WRITE_DSFID
new Data Storage Format Identifier value

Cl=>HOST: 0x00
0x98

ACK byte
related command code ICODE_WRITE_DSFID

6.5.10 Lock DSFID (0x99)

This command performs a Lock DSIFD command on the TAG. When it receives the lock DSFID request, the TAG locks
the DSFID value permanently into its memory.

Command description

Argument Size | Value | Description

Command ID 1 0x99 | ICODE_LOCK_DSFID
Response description

ACK 1 0x00

Command ID 1 0x99 | ICODE_LOCK_DSFID

Example:

HOST=>C1l: 0x99 - ICODE_LOCK_DSFID

C1=>HOST: 0x00 - ACK byte
0x99 - related command code ICODE_LOCK_DSFID

79

D
Eccel....

Embedded RFID made simple

6.5.11 Get System Information (0x9A)

This command performs get system information command on the TAG. No arguments are required. The ACK response

contains bytes with system information. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 0x9A | ICODE_GET_SYSTEM_INFORMATION
Response description

ACK 1 0x00

Command ID 1 0x9A | ICODE_GET_SYSTEM_INFORMATION

System information X XXX | System information bytes

Example:

HOST=>Cl: Ox9A - ICODE_GET_SYSTEM_INFORMATION

C1=>HOST: 0x00 - ACK byte

Ox9A - related command code ICODE_GET_SYSTEM_INFORMATION

OxOF 0x04 Ox8F Ox7F 0x0A 0x01 0Ox24
0x16 OxEO 0x00 0x00 0x33 0x03 0x02 - result bytes

6.5.12 Get multiple BSS (0x9B)

This command performs get multiple block security status command on the TAG. It takes as arguments the block
number for which the status should be returned and the number of blocks to be used for returning the status. The ACK
response contains bytes with block security status information. Please refer to the NXP documentation for more

information.
Command description
Argument Size | Value | Description
Command ID 1 | Ox9B | ICODE_GET_MULTIPLE_BSS
First block number 1 X
Number of blocks 1 N
Response description
ACK 1 0x00
Command ID 1 0x9B | ICODE_GET_MULTIPLE_BSS
BSS information N X Blocks security status information
Example:
HOST=>Cl: 0Ox9B - ICODE_GET_MULTIPLE_BSS
0x00 - starting block number
0x08 - number of BSS to read
C1=>HOST: 0x00 - ACK byte
0x9B - related command code ICODE_GET_MULTIPLE_BSS
0x00 0x00 0x00 0x00 0x00 0x00 0x00 Ox00 - result bytes

80

N

E C c e I Technology Ltd
c

Embedded RFID made simple

6.5.13 Password protect AFI (0x9C)

This command enables the password protection for AFl. The AFI password has to be transmitted before with

ICODE_SET_PASSWORD command.

Command description

Argument Size | Value | Description

Command ID 1 0x9C | ICODE_PASSWORD_PROTECT_AFI
Response description

ACK 1 0x00

Command ID 1 0x9C | ICODE_PASSWORD_PROTECT_AFI

Example:

HOST=>C1l: Ox9C - ICODE_PASSWORD_PROTECT_AFI

C1=>HOST: 0x00 - ACK byte
0x9C - related command code ICODE_PASSWORD_PROTECT_AFI

6.5.14 Read EPC (0x9D)

This command reads EPC data from the TAG. The ACK response contains 12-bytes of EPC data. Please refer to the NXP

documentation for more information.

Command description

Argument Size | Value | Description
Command ID 1 0x9D | ICODE_READ_EPC
Response description
ACK 1 0x00
Command ID 1 0x9D | ICODE_READ_EPC
EPC information 12 X Please refer to the NXP documentation for more information.

Example:

HOST=>C1:

C1=>HOST:

0Ox9D - ICODE_READ_EPC

0x00 - ACK byte
0x9D - related command code ICODE_READ_EPC
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 - result bytes

6.5.15 Get NXP System Information (Ox9E)

This command retrieves the NXP system information value from the TAG. No arguments are required. The ACK
response contains bytes with the NXP system information. Please refer to the NXP documentation for more

information.

81

N

ol
C c e ' T i
E fechnology Ltd

Embedded RFID made simple

Command description

Argument

Size | Value | Description

Command ID

1 Ox9E | ICODE_GET_NXP_SYSTEM_INFORMATION

Response description

ACK

1 0x00

Command ID

1 Ox9E | ICODE_GET_NXP_SYSTEM_INFORMATION

System information

X XXX | System information bytes

Example:

HOST=>C1:

Cl=>HOST:

OX9E - ICODE_GET_NXP_SYSTEM_INFORMATION

0x00 - ACK byte

OX9E - related command code ICODE_GET_NXP_SYSTEM_INFORMATION
OxOF 0x04 Ox8F Ox7F Ox0A 0x01 0x24

0x16 OxEO 0x00 0x00 0x33 0x03 0x02 - result bytes

6.5.16 Get random number (Ox9F)

This command requests a random number from the ICODE TAG. No arguments are required. The ACK response
contains a 16-bit random number. This value should be used with ICODE_SET_PASSWORD command.

Command description

Argument

Size | Value | Description

Command ID

1 | Ox9F | ICODE_GET_RANDOM_NUMBER

Response description

ACK

1 0x00

Command ID

1 | Ox9F | ICODE_GET_RANDOM_NUMBER

Random number

2 XXX | 16-bits random number

Example:

HOST=>C1:

C1=>HOST:

Ox9F - ICODE_GET_RANDOM_NUMBER

0x00 - ACK byte
Ox9F - related command code ICODE_GET_RANDOM_NUMBER
Ox7F 0x14 - result bytes

6.5.17 Set password (OxAO)

This command sets the password for the selected identifier. This command has to be executed just once for the related
passwords if the TAG is powered. The password is calculated as XOR with the random number returned by the
previously executed command ICODE_GET_RANDOM_NUMBER.

Here is an example how to calculate XOR password:
xorPassword[0] = password[0] * rnd[0];
xorPassword[1] = password[1] » rnd[1];
xorPassword[2] = password[2] * rnd[0];
xorPassword[3] = password[3] » rnd[1];

82

D
Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 O0xAO | ICODE_SET_PASSWORD
0x01 — Read password
Password Identifier 1 X 0x02 - W_r ite password
0x04 — Privacy password
0x08 — Destroy password
XOR Password 4 X
Response description
ACK 1 0x00
Command ID 1 O0xAO | ICODE_SET_PASSWORD
Example:

HOST=>Cl: OxAO - ICODE_SET_PASSWORD
0x02 - write password
0x34 0x76 0x39 0x64 - calculated XOR password

C1=>HOST: 0x00 - ACK byte
0xAO0 - related command code ICODE_SET_PASSWORD

6.5.18 Write password (0xA1)

This command writes a new password to a selected identifier. With this command, a new password is written into the
related memory. Note that the old password has to be transmitted before with ICODE_SET_PASSWORD. The new
password takes effect immediately which means that the new password has to be transmitted with
ICODE_SET_PASSWORD to get access to the protected blocks/pages. It takes as arguments the password identifier
byte and the plain password 4-bytes long.

Command description
Argument Size | Value | Description
Command ID 1 OxAl | ICODE_WRITE_PASSWORD
0x01 — Read password
0x02 — Write password
0x04 — Privacy password
0x08 — Destroy password
Password 4 X Plain password
Response description

Password Identifier 1 X

ACK 1 0x00
Command ID 1 OxAl | ICODE_WRITE_PASSWORD
Example:

HOST=>Cl: OxAl - ICODE_WRITE_PASSWORD
0x02 - write password
0x34 0x76 0x39 0x64 - Plain password

C1=>HOST: 0x00 - ACK byte
OxAl - related command code ICODE_WRITE_PASSWORD

83

D
Eccel...."

Embedded RFID made simple

6.5.19 Lock password (0xA2)

This command locks the addressed password. Note that the addressed password has to be transmitted before with

ICODE_SET_PASSWORD. A locked password can no longer be changed.

Command description

Argument Size | Value | Description

Command ID 1 0xA2 | ICODE_LOCK_PASSWORD

0x01 — Read password
0x02 — Write password

Password Identifier 1 X S T V-
0x08 — Destroy password
Response description
ACK 1 0x00
Command ID 1 0xA2 | ICODE_LOCK_PASSWORD
Example:

HOST=>C1l: OxAZ2
0x02

ICODE_LOCK_PASSWORD
write password

Cl=>HOST: 0x00
OxA2

ACK byte

6.5.20 Protect page (0xA3)

related command code ICODE_LOCK_PASSWORD

This command changes the protection status of a page. Note that the related passwords have to be transmitted before
with ICODE_SET_PASSWORD if the page is not public. Please refer to the NXP documentation for more information.

Command description
Argument Size | Value | Description
Command ID 1 OxA3 | ICODE_PAGE_PROTECT
e Page number to be protected in case of products that do not have
el 1 X pages characterized as high anfj Low.
e Block number to be protected in case of products that have pages
characterized as high and Low.
e Protection status options for the products that do not have pages
characterized as high and Low:
0x00: ICODE_PROTECT_PAGE_PUBLIC
0x01: ICODE_PROTECT_PAGE_READ_WRITE_READ_PASSWORD
0x10: ICODE_PROTECT_PAGE_WRITE_PASSWORD
Protection status 1 X 0x11: ICODE_PROTECT_PAGE_READ_WRITE_PASSWORD_SEPERATE
e Extended Protection status options for the products that have pages
characterized as high and Low:
0x01: ICODE_PROTECT_PAGE_READ_LOW
0x02: ICODE_PROTECT_PAGE_WRITE_LOW
0x10: ICODE_PROTECT_PAGE_READ_HIGH

84

Eccel...."

Embedded RFID made simple

\ \ | 0x20: ICODE_PROTECT_PAGE_WRITE_HIGH
Response description

ACK 1 0x00
Command ID 1 OxA2 | ICODE_PAGE_PROTECT
Example:

HOST=>C1l: OxA3 ICODE_PAGE_PROTECT
0x02 - second block selected
Ox01 - ICODE_PROTECT_PAGE_READ_LOW flag selected

C1=>HOST: 0x00 - ACK byte
0xA3 - related command code ICODE_PAGE_PROTECT

6.5.21 Lock page protection (OxA4)

This command permanently locks the protection status of a page. Note that the related passwords have to be
transmitted before with ref ICODE_SET _PASSWORD if the page is not public.

Command description

Argument Size | Value | Description
Command ID 1 0xA4 | ICODE_LOCK_PAGE_PROTECTION
Page number 1 X

Response description
ACK 1 0x00
Command ID 1 0xA4 | ICODE_LOCK_PAGE_PROTECTION
Example:

HOST=>C1l: OxA4

ICODE_LOCK_PAGE_PROTECTION

0x02 - page number
C1=>HOST: 0x00 - ACK byte
OxA4 - related command code ICODE_LOCK_PAGE_PROTECTION

6.5.22 Get multiple block protection status (OxA5)

This instructs the label to return the block protection status of the requested blocks. It takes as arguments the first
block number to get the block protection status and the number of blocks.

Command description

Argument Size | Value | Description
Command ID 1 OxA5 | ICODE_GET_MULTIPLE_BPS
First block number 1 X
Number of blocks 1 N
Response description
ACK 1 0x00
Command ID 1 OxA5 | ICODE_GET_MULTIPLE_BPS
BSS information N X Blocks protection status information

85

Eccel....

Embedded RFID made simple

Example:

HOST=>C1l: OxA5 ICODE_GET_MULTIPLE_BPS
0x00 - starting block number
0x08 - number of BSS to read

C1=>HOST: 0x00 - ACK byte
OxA5 related command code ICODE_GET_MULTIPLE_BPS
0x00 OxOO 0x00 0x00 0x00 0x00 0x00 0x00 - result bytes

6.5.23 Destroy (OxA6)

This command permanently destroys the label (tag). The destroy password has to be transmitted before with
ICODE_SET_PASSWORD. This command is irreversible and the label will never respond to any command again. This
command can take the XOR password argument for the ICODE products that requires this argument. The XOR
password calculation method is described in the ICODE_SET_PASSWORD description.

Command description

Argument Size | Value | Description
Command ID 1 OxA6 | ICODE_DESTROY
XOR password 4 X Optional XOR password
Response description
ACK 1 0x00
Command ID 1 OxA6 | ICODE_DESTROY
Example:

HOST=>C1l: OxA6 - ICODE_DESTROY
C1=>HOST: 0x00 - ACK byte
0xA6 - related command code ICODE_DESTROY

6.5.24 Enable privacy (0xA7)

This command instructs the label to enter privacy mode. In privacy mode, the label will only respond to
ICODE_GET_RANDOM_NUMBER and ICODE_SET PASSWORD commands. To get out of the privacy mode, the Privacy
password has to be transmitted before with ICODE_SET_PASSWORD.

Command description

Argument Size | Value | Description
Command ID 1 OxA7 | ICODE_ENABLE_PRIVACY
XOR password 4 X Optional XOR password
Response description
ACK 1 0x00
Command ID 1 OxA7 | ICODE_ENABLE_PRIVACY
Example:

86

S
Eccel...."

Embedded RFID made simple

HOST=>Cl: OXA7 - ICODE_ENABLE_PRIVACY

C1=>HOST: 0x00 - ACK byte
OxA7 - related command code ICODE_ENABLE_PRIVACY

6.5.25 Enable 64-bit password (OxA8)

This instructs the label that both Read and Write passwords are required for protected access. Note that both the
Read and Write passwords have to be transmitted before with ICODE_SET_PASSWORD.

Command description

Argument Size | Value | Description

Command ID 1 OxA8 | ICODE_ENABLE_64BIT_PASSWORD
Response description

ACK 1 0x00

Command ID 1 0xA8 | ICODE_ENABLE_64BIT_PASSWORD

Example:

HOST=>Cl: OxA8 - ICODE_ENABLE_64BIT_PASSWORD

C1=>HOST: 0x00 - ACK byte
0xA8 - related command code ICODE_ENABLE_64BIT_PASSWORD

6.5.26 Read signature (OxA9)

This command reads the signature bytes from the TAG. No arguments are required. The ACK response contains bytes
containing the signature bytes. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 OxA9 | ICODE_READ_SIGNATURE
Response description

ACK 1 0x00

Command ID 1 OxA9 | ICODE_READ_SIGNATURE

Signature bytes X XXX | Signature bytes

Example:

HOST=>Cl: OxA9 - ICODE_READ_SIGNATURE

C1=>HOST: 0x00 - ACK byte
OxA9 - related command code ICODE_READ_SIGNATURE
OxOF 0x04 Ox8F Ox7F Ox0A 0x01 0Ox24
0x16 OxEO 0x00 0x00 0x33 0x03 0x02 - result bytes

87

S
Eccel...."

Embedded RFID made simple

6.5.27 Read config (OxAA)

This command reads multiple 4-byte data chunks from the selected configuration block address. It takes two
arguments, the first block number and the number of blocks to read the configuration data.

Command description

Argument Size | Value | Description
Command ID 1 OxAA | ICODE_READ_CONFIG
First block number 1 X
Number of blocks 1 N
Response description
ACK 1 0x00
Command ID 1 OxAA | ICODE_READ_CONFIG
Configuration bytes N*4 X
Example:

HOST=>C1l: OxAA
0x00
0x02

ICODE_READ_CONFIG
starting block number
number of blocks to read

C1=>HOST: 0x00 - ACK byte
OxAA - related command code ICODE_READ_CONFIG
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 - result bytes

6.5.28 Write config (OxAB)

This command writes configuration bytes to addressed block data from the selected configuration block address. It
takes three arguments: the option byte, the block number and the configuration bytes. Please refer to the NXP
documentation for more information.

Command description

Argument Size | Value | Description
Command ID 1 OxAB | ICODE_WRITE_CONFIG

. 0x01 — Enable option
Option byte 1 X 0x00 — Disable option
Block number 1 X
Configuration bytes 4 X

Response description
ACK 1 0x00
Command ID 1 OxAB | ICODE_WRITE_CONFIG
Example:

HOST=>C1l: OXAB - ICODE_WRITE_CONFIG
0x01 - option byte
0x00 - block number
0x00 0x00 0x00 0x00 - config bytes

88

S
Eccel...."

Embedded RFID made simple

C1=>HOST: 0x00 - ACK byte
OxAB - related command code ICODE_WRITE_CONFIG

6.5.29 Pick random ID (OxAC)

This command enables the random ID generation in the tag. This interface is used to instruct the tag to generate a
random number in privacy mode. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 OxAC | ICODE_PICK_RANDOM_ID
Response description

ACK 1 0x00

Command ID 1 OxAC | ICODE_PICK_RANDOM_ID

Example:

HOST=>Cl: OXAB - ICODE_PICK_RANDOM_ID

C1=>HOST: 0x00 - ACK byte
OxAB - related command code ICODE_PICK_RANDOM_ID
6.6 OTA upgrade

The commands listed below can be used to perform an OTA upgrade.

6.6.1 OTA begin (OxFO)

This command must be executed to start the OTA upgrade process. The device responds with an ACK and then host
should wait about 4seconds to send first OTA frame while the device is erasing internal flash.

Command description

Argument Size | Value | Description
Command ID 1 OxOF0 | OTA begin
Response description
ACK 1 0x00
Command ID 1 OxFO | OTA begin
Example:

HOST=>C1l: OxFO - OTA begin

C1=>HOST: O0x00 - ACK byte
OxFO - related command code OTA begin

6.6.2 OTA firmware frame (OxF1)

When the OTA begin frame has already been executed, the host application can upload binary firmware file in chunks
that are 128 bytes long (the last frame can be smaller).

89

Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description

Command ID 1 OxOF1 | OTA frame

Firmware bytes '\f;;(Firmware bytes in chunks 128bytes long.
Response description

ACK 1 0x00

Command ID 1 OxF1 | OTA frame

Example:

HOST=>Cl: OxF1l - OTA frame
0x34 0x67 .. 0x45 - firmware bytes

C1=>HOST: O0x00 - ACK byte
OxF1l - related command code OTA frame

6.6.3 OTA finish (OxF2)
The command must be executed after all firmware frames are written to the device. The bootloader application checks

the integrity of the application. After this step the host can send the REBOOT command to reboot the device and run
the new firmware. If there is a problem with communication after a device upgrade, please perform a factory reset.

Command description

Argument Size | Value | Description
Command ID 1 0xOF2 | OTA finish
Response description
ACK 1 0x00
Command ID 1 O0xF2 | OTA finish
Example:

HOST=>Cl: OxF4 - OTA finish

C1=>HOST: O0x00 - ACK byte
OxF4 - related command code OTA finish

90

D
Eccel....

Embedded RFID made simple

7. Mechanical dimension

All dimensions are in mm.

A
) — Jla
J1 n
”
eho (B
vin 5V|Q o
rs232_c7s|0Q||O
- RS232_RX|O
«Rs232_7X|©Q
- O
m ﬁ 5 c2 Cl B -r- g
g[llll] L ey
o O - e vt . £ H
o - = =3 §55 § §
= = o it o T
O 1© |[ER™egygn =
0 ¥ |iimm iNpgE
gEg LED1 RE °

Figure 7-1

91

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

MIFARE, MIFARE Ultralight, MIFARE Plus, MIFARE Classic, and MIFARE DESFire are trademarks of NXP B.V.

No responsibility is taken for the method of integration or final use of the OEM readers

More information about the OEM readers and other products can be found at the Internet site:

http://www.eccel.co.uk

or alternatively contact ECCEL Technology (IB Technology) by e-mail at:

sales@eccel.co.uk

92

	1. Introduction
	1.1 Device Overview

	2. Electrical specification
	2.1 Absolute maximum ratings
	2.2 Operating conditions
	2.3 DC characteristics (VDD = 5 V, TS = 25 C)
	2.4 Current consumption (5V input)

	3. Getting started
	3.1 Board description
	3.1.1 IO header description (J2)
	3.1.2 J1 header description (RS232 version)

	3.2 Typical connection

	4. OEM Micode compatibility mode
	4.1 Auxiliary Data Output
	4.2 MIFARE Transponders
	4.3 ICODE SLI Transponders
	4.4 ISO14443B Transponders
	4.5 MicroRWD MF-IC modes of operation
	4.6 Supported transponder types
	4.6.1 MIFARE Mode
	4.6.2 ICODE SLI Mode
	4.6.3 ISO14443B Mode

	4.7 Serial Interface
	4.7.1 NO card present and NO host commands received.
	4.7.2 MIFARE/ICODE card in field, NO host commands received.
	4.7.3 Host commands received and processed.
	4.7.4 Auxiliary output and BEEP delay timing (if options are enabled)

	4.8 Summary of Polling rates and command timing
	4.9 Host Driver software
	4.10 Switch to C1 mode
	4.11 Commands for MIFARE, ICODE and ISO14443B modes
	4.11.1 Card / Label STATUS
	4.11.2 MESSAGE Report
	4.11.3 Program EEPROM
	4.11.4 Internal EEPROM memory map
	4.11.5 Factory Reset
	4.11.6 Command Protocol (MIFARE Mode)
	4.11.7 Store Keys
	4.11.8 Internal Key Storage memory map (default settings)
	4.11.9 Write Card Block
	4.11.10 Read Card Block
	4.11.11 Inc Value (only operates on Value Data Structure)
	4.11.12 Dec Value (only operates on Value Data Structure)
	4.11.13 Transfer Value (only operates on Value Data Structure)
	4.11.14 Card UID
	4.11.15 Type Identification
	4.11.16 Command Protocol (ICODE SLI Mode)
	4.11.17 Write Label Block
	4.11.18 Read Label Block
	4.11.19 Label UID
	4.11.20 Command Protocol (ISO14443B Mode)
	4.11.21 Card UID
	4.11.22 Notes for Commands (MIFARE, ICODE, ISO14443B)

	4.12 Method of Operation
	4.13 Basic RWD Communication
	4.14 Auxiliary Asynchronous Serial output

	5. C1 protocol compatibility mode
	5.1 Overview
	5.2 Frame structure
	5.3 CRC calculation

	6. C1 command list
	6.1 Generic commands
	6.1.1 Acknowledge frame (0x00)
	6.1.2 Error response (0xFF)
	6.1.3 Dummy command (0x01)
	6.1.4 Get tag count (0x02)
	6.1.5 Get tag UID (0x03)
	6.1.6 Activate TAG (0x04)
	6.1.7 Halt (0x05)
	6.1.8 Set key (0x07)
	6.1.9 Save keys (0x08)
	6.1.10 Reboot (0x0A)
	6.1.11 Get version (0x0B)
	6.1.12 Factory reset command (0x11)

	6.2 MIFARE Classics commands
	6.2.1 Read block (0x20)
	6.2.2 Write block (0x21)
	6.2.3 Read value (0x22)
	6.2.4 Write value (0x23)
	6.2.5 Increment/decrement value (0x24)
	6.2.6 Transfer value (0x25)
	6.2.7 Restore value (0x26)
	6.2.8 Transfer-Restore value (0x27)

	6.3 MIFARE Ultralight commands
	6.3.1 Read page (0x40)
	6.3.2 Write page (0x41)
	6.3.3 Get version (0x42)
	6.3.4 Read signature (0x43)
	6.3.5 Write signature (0x44)
	6.3.6 Lock signature (0x45)
	6.3.7 Read counter (0x46)
	6.3.8 Increment counter (0x47)
	6.3.9 Password auth (0x48)
	6.3.10 Ultralight-C authenticate (0x49)
	6.3.11 Check Tearing Event (0x4A)

	6.4 MIFARE Desfire commands
	6.4.1 Get version (0x60)
	6.4.2 Select application (0x61)
	6.4.3 List application IDs (0x62)
	6.4.4 List files IDs (0x63)
	6.4.5 Authenticate (0x64)
	6.4.6 Authenticate ISO (0x65)
	6.4.7 Authenticate AES (0x66)
	6.4.8 Create application (0x67)
	6.4.9 Delete application (0x68)
	6.4.10 Change key (0x69)
	6.4.11 Get key settings (0x6A)
	6.4.12 Change key settings (0x6B)
	6.4.13 Create standard or backup data file (0x6C)
	6.4.14 Write data (0x6D)
	6.4.15 Read data (0x6E)
	6.4.16 Create value file (0x6F)
	6.4.17 Get value (0x70)
	6.4.18 Credit file (0x71)
	6.4.19 Limited credit file (0x72)
	6.4.20 Debit file (0x73)
	6.4.21 Create record file (0x74)
	6.4.22 Write record (0x75)
	6.4.23 Read record (0x76)
	6.4.24 Clear records (0x77)
	6.4.25 Delete file (0x78)
	6.4.26 Get free memory (0x79)
	6.4.27 Format memory (0x7A)
	6.4.28 Commit transaction (0x7B)
	6.4.29 Abort transaction (0x7C)

	6.5 ICODE (ISO15693) commands
	6.5.1 Inventory start (0x90)
	6.5.2 Inventory next (0x91)
	6.5.3 Stay quiet (0x92)
	6.5.4 Read block (0x93)
	6.5.5 Write block (0x94)
	6.5.6 Lock block (0x95)
	6.5.7 Write AFI (0x96)
	6.5.8 Lock AFI (0x97)
	6.5.9 Write DSFID (0x98)
	6.5.10 Lock DSFID (0x99)
	6.5.11 Get System Information (0x9A)
	6.5.12 Get multiple BSS (0x9B)
	6.5.13 Password protect AFI (0x9C)
	6.5.14 Read EPC (0x9D)
	6.5.15 Get NXP System Information (0x9E)
	6.5.16 Get random number (0x9F)
	6.5.17 Set password (0xA0)
	6.5.18 Write password (0xA1)
	6.5.19 Lock password (0xA2)
	6.5.20 Protect page (0xA3)
	6.5.21 Lock page protection (0xA4)
	6.5.22 Get multiple block protection status (0xA5)
	6.5.23 Destroy (0xA6)
	6.5.24 Enable privacy (0xA7)
	6.5.25 Enable 64-bit password (0xA8)
	6.5.26 Read signature (0xA9)
	6.5.27 Read config (0xAA)
	6.5.28 Write config (0xAB)
	6.5.29 Pick random ID (0xAC)

	6.6 OTA upgrade
	6.6.1 OTA begin (0xF0)
	6.6.2 OTA firmware frame (0xF1)
	6.6.3 OTA finish (0xF2)

	7. Mechanical dimension

