

1

Pepper C1 software manual
Manual version: V1.51

02/12/2024

Table of Contents

1. Configuration – Web Interface ... 7

1.1 Network Configuration .. 7

1.1.1 Wi-Fi Access Point mode .. 7

1.1.2 Wi-Fi Client mode .. 8

1.1.3 Disabling wireless communication ... 9

1.2 RFID .. 10

1.3 Communication interfaces ... 10

1.3.1 General configuration .. 10

1.3.2 UART configuration ... 10

1.3.3 TCP Client/Server... 11

1.3.4 2.4GHz wireless communication (WPAN) ... 11

1.3.5 MQTT .. 11

1.3.6 REST API interface ... 12

1.3.7 Web sockets .. 13

1.4 Miscellaneous options ... 13

1.5 Status .. 15

1.6 Firmware upgrade ... 15

1.7 Backup & Restore .. 16

2. Rescue mode and factory reset .. 17

2.1 Rescue mode ... 17

2.2 Automatic rescue mode .. 17

2.3 Resetting module to factory defaults ... 17

3. Sleep mode .. 18

4. JSON interface for MQTT and WebSocket protocols .. 20

1 The newest software manual can be found on our website: https://eccel.co.uk/wp-
content/downloads/Pepper_C1/C1_software_manual.pdf

https://eccel.co.uk/wp-content/downloads/Pepper_C1/C1_software_manual.pdf
https://eccel.co.uk/wp-content/downloads/Pepper_C1/C1_software_manual.pdf

2

4.1 Status frame .. 20

4.2 RFID frame .. 20

4.3 UART passthru frame .. 20

4.4 Event frame ... 21

4.4.1 Set GPIO high/low ... 21

4.4.2 Toggle GPIO high/low .. 21

4.4.3 UART passthru event ... 21

4.4.4 LED event .. 21

4.4.5 Read tag command .. 22

4.4.6 Write tag command ... 22

5. Communication interface – binary interface .. 23

5.1 Overview ... 23

5.2 Frame structure... 23

5.3 CRC calculation .. 24

5.4 Pepper C1 Client – PC application .. 26

6. WPAN interface .. 27

6.1 WPAN Serial Port Profile .. 27

6.2 WPAN Low Energy GATT service .. 27

6.2.1 WPAN Low Energy GATT as an additional interface .. 27

6.3 WPAN LE HID profile.. 27

6.4 WPAN bridge extension ... 28

7. RS-485 Communication .. 29

7.1 Modbus RTU.. 29

7.2 Binary protocol over RS-485 .. 31

8. Key storage... 32

9. Polling mode .. 33

9.1 Web configuration for polling mode .. 33

9.1.1 Supported technologies ... 34

9.1.2 RFID power settings ... 34

9.1.3 Polling loop settings... 34

9.1.4 Read memory settings ... 34

9.1.5 Polling events .. 34

3

9.1.6 Extra settings for MUX device .. 36

9.2 Known UID list ... 37

10. Commands list .. 38

10.1 Generic commands.. 38

10.1.1 Acknowledge frame (0x00) .. 38

10.1.2 Error response (0xFF)... 38

10.1.3 Dummy command (0x01) .. 41

10.1.4 Get tag count (0x02) .. 41

10.1.5 Get tag UID (0x03) ... 42

10.1.6 Activate TAG (0x04) ... 43

10.1.7 Halt (0x05) ... 43

10.1.8 Set polling (0x06) ... 44

10.1.9 Set key (0x07) .. 44

10.1.10 Save keys (0x08) .. 45

10.1.11 Network config (0x09) ... 45

10.1.12 Reboot (0x0A).. 50

10.1.13 Get version (0x0B) ... 51

10.1.14 UART passthru (0x0C) ... 51

10.1.15 Sleep command (0x0D) .. 52

10.1.16 GPIO command (0x0E) ... 52

10.1.17 Set active antenna (0x0F) – Pepper C1 MUX only ... 53

10.1.18 WPAN pin command (0x10) ... 54

10.1.19 Factory reset command (0x11) .. 54

10.1.20 Protocol authorization (0x12) .. 55

10.1.21 Protocol configuration (0x13) .. 55

10.1.22 LED command (0x14) ... 62

10.1.23 WPAN data command(0x15) .. 62

10.1.24 Polling setup (0x16) ... 63

10.1.25 Sleep setup (0x17) ... 72

10.1.26 LOG forwarding (0xE4) ... 78

10.2 MIFARE Classics commands ... 80

10.2.1 Read block (0x20) .. 80

4

10.2.2 Write block (0x21) ... 80

10.2.3 Read value (0x22) .. 81

10.2.4 Write value (0x23) ... 82

10.2.5 Increment/decrement value (0x24) ... 82

10.2.6 Transfer value (0x25) ... 83

10.2.7 Restore value (0x26) .. 84

10.2.8 Transfer-Restore value (0x27) .. 84

10.3 MIFARE Ultralight commands .. 85

10.3.1 Read page (0x40) ... 85

10.3.2 Write page (0x41) .. 86

10.3.3 Get version (0x42) ... 86

10.3.4 Read signature (0x43) .. 87

10.3.5 Write signature (0x44) ... 87

10.3.6 Lock signature (0x45) ... 88

10.3.7 Read counter (0x46) .. 88

10.3.8 Increment counter (0x47) .. 89

10.3.9 Password auth (0x48) .. 89

10.3.10 Ultralight-C authenticate (0x49) ... 90

10.3.11 Check Tearing Event (0x4A) ... 90

10.4 MIFARE DESFire commands ... 91

10.4.1 Get version (0x60) ... 91

10.4.2 Select application (0x61) .. 91

10.4.3 List application IDs (0x62) .. 92

10.4.4 List files IDs (0x63) ... 92

10.4.5 Authenticate (0x64) ... 93

10.4.6 Authenticate ISO (0x65) ... 93

10.4.7 Authenticate AES (0x66) .. 94

10.4.8 Create application (0x67) ... 94

10.4.9 Delete application (0x68) ... 95

10.4.10 Change key (0x69) ... 95

10.4.11 Get key settings (0x6A) .. 95

10.4.12 Change key settings (0x6B) .. 96

5

10.4.13 Create standard or backup data file (0x6C) .. 96

10.4.14 Write data (0x6D) .. 97

10.4.15 Read data (0x6E).. 98

10.4.16 Create value file (0x6F) .. 98

10.4.17 Get value (0x70) .. 99

10.4.18 Credit file (0x71) .. 99

10.4.19 Limited credit file (0x72) .. 100

10.4.20 Debit file (0x73) ... 100

10.4.21 Create record file (0x74) .. 101

10.4.22 Write record (0x75) ... 101

10.4.23 Read record (0x76) .. 102

10.4.24 Clear records (0x77)... 102

10.4.25 Delete file (0x78) ... 103

10.4.26 Get free memory (0x79) .. 103

10.4.27 Format memory (0x7A) .. 104

10.4.28 Commit transaction (0x7B) .. 104

10.4.29 Abort transaction (0x7C) .. 105

10.4.30 Get file settings file (0x7D) ... 105

10.4.31 Set file settings (0x7E).. 106

10.5 ICODE (ISO15693) commands .. 107

10.5.1 Inventory start (0x90) .. 107

10.5.2 Inventory next (0x91) .. 107

10.5.3 Stay quiet (0x92).. 108

10.5.4 Read block (0x93) .. 108

10.5.5 Write block (0x94) ... 109

10.5.6 Lock block (0x95) ... 110

10.5.7 Write AFI (0x96) .. 110

10.5.8 Lock AFI (0x97) .. 110

10.5.9 Write DSFID (0x98) .. 111

10.5.10 Lock DSFID (0x99) .. 111

10.5.11 Get System Information (0x9A) .. 112

10.5.12 Get multiple BSS (0x9B) ... 112

6

10.5.13 Password protect AFI (0x9C) .. 113

10.5.14 Read EPC (0x9D) .. 113

10.5.15 Get NXP System Information (0x9E) ... 114

10.5.16 Get random number (0x9F) ... 114

10.5.17 Set password (0xA0) .. 114

10.5.18 Write password (0xA1) .. 115

10.5.19 Lock password (0xA2) .. 116

10.5.20 Protect page (0xA3) ... 116

10.5.21 Lock page protection (0xA4) .. 117

10.5.22 Get multiple block protection status (0xA5) ... 118

10.5.23 Destroy (0xA6) ... 118

10.5.24 Enable privacy (0xA7) .. 119

10.5.25 Enable 64-bit password (0xA8) .. 119

10.5.26 Read signature (0xA9) .. 119

10.5.27 Extended read block (0xB3) ... 120

10.5.28 Extended write block (0xB4) .. 121

10.5.29 Read config (0xAA) .. 121

10.5.30 Write config (0xAB).. 122

10.5.31 Pick random ID (0xAC) ... 122

10.5.32 ICODE custom command (15693) (0xBF) .. 123

10.6 OTA upgrade ... 123

10.6.1 OTA begin (0xF0) ... 123

10.6.2 OTA firmware frame (0xF1) ... 124

10.6.3 OTA finish (0xF2) ... 124

11. Revision history .. 126

7

1. Configuration – Web Interface

The reader has Wi-Fi functionality and can be configured through the Web Interface. The Pepper C1 can work in either

station mode or client mode. The default mode is station mode. The user can login using the web interface and set a

SSID and a password for their Wi-Fi network.

The Web Interface is divided into several sections: The Network configuration, RFID, Communication, Misc, Status,

Upgrade and Backup & Restore. All sections are described below.

1.1 Network Configuration

1.1.1 Wi-Fi Access Point mode

This is the default mode. In this mode, the reader works as a Wi-Fi access point. It’s discoverable as a “Pepper_C1-

XXXXXX, where XXXXXX are the last three bytes of the unique MAC address, e.g. Pepper_C1-567801.

After connecting with this access point, the Web Interface will open automatically in the web browser. The Web

Interface is password protected. The default username is admin, and the default password is admin. The user can also

set the Access Point password. The default IP address, where the Web Interface is available is 192.168.100.1.

Figure 1. Web Interface in the Wi-Fi Access Point mode

8

1.1.2 Wi-Fi Client mode

The reader can be connected to the user’s local Wi-Fi network and get the local IP address. The Wi-Fi mode should be

changed to “client” and the Wi-Fi credentials should be provided. The reader IP address can be set to “Static” or “Auto

(DHCP)”. The assigned IP address will be visible in the console logs (UART2 by default):

Figure 2. Console logs (UART2 by default)

Figure 3. Web Interface in the Wi-Fi Client mode with Auto (DHCP) address type.

9

Figure 4. Web Interface in the Wi-Fi Client mode with Static IP address type

1.1.3 Disabling wireless communication

The user can disable Wi-Fi by setting Wi-Fi mode to off. The wireless communication will remain off after repower. To

enable Wi-Fi the user should send a specific command over binary protocol of reset the device to defaults.

Figure 5. Disabling Wi-Fi in the Web Interface

10

1.2 RFID

In this tab the user can change configuration for the default RFID behavior. This tab has three subcategories relating

to RFID functionality and built in polling options:

• Polling

• Known UIDs

• Key storage

Figure 6 Configuration tabs for RFID

More information about this functionality is provided in the Polling mode section in this document.

1.3 Communication interfaces

1.3.1 General configuration

On this tab we can configure general options for the device.

• MDNS service – when this option is enabled this option device will announce its own name over this service.

You can also query for _pepperc1._tcp.local to search all devices in the network. This option is enabled by

default.

• UDP discovery – this is our custom UDP broadcast service listening on port 63311. To search for a devices in

the network host have to send string “P_C1:SCAN” as broadcast message to the network and all devices should

send response in format P_C1:<device name>:<version>. eg: P_C1:Pepper_C1-1A64D4:2.0

• Device name – this name will be used in all services, included in JSON frames etc.

• Protocol password – this is optional password needed for wireless connections like TCP client/server and

WPAN service.

1.3.2 UART configuration

On this configuration tab the user can select what will be provided on the UARTs available on the Pepper C1. Two

UARTs are available

• UART0/USB – this UART port is accessible over USB connection for boards with USB port, or on the J4 port if

boards don’t have USB port.

• UART2 – this UART port is available on the J1 port

11

On these ports we can select different protocols:

• Binary protocol – this is the standard protocol described in section 8.

• Console logs – with this option selected the reader sends internal logs to the user.

• Modbus/ RS485 binary – this protocol is only available on the UART2 port, this should be used on the boards

with a RS485 converter.

• UART Passthru – this option should be enabled if you want to use other external devices over this UART port

• Disabled - UART pins can be used as GPIO

1.3.3 TCP Client/Server

These services provide communication using TCP connection. The user can configure a port for this service, timeout

and server address for TCP Client. If the timeout value is set, the host must send any frame (e.g. dummy command)

before the timeout expires to keep the connection alive. From firmware version 2.35 onwards, if the device is

configured in the polling settings to send asynchronous packets in JSON format then the host can send ping messages

to the device in the JSON format also:

{"type":"ping"}

The device should answer with:

{"type":"pong"}

1.3.4 2.4GHz wireless communication (WPAN)

Three options are available for WPAN communication:

• WPAN SPP - Serial Port Profile

• WPAN Low energy service – this is a custom WPAN Low Energy service. More details about this profile can be

found in the WPAN Interface section in this document

• WPAN LE HID – this profile can be used to emulate a WPAN LE HID keyboard

WARNING!
WPAN services use a lot of module memory, so in some cases WPAN service is not enabled at startup. The reader waits

one minute at startup and if no activity is detected on the Web Interface, then the web service is disabled to release

memory needed for the WPAN service. During this period, the module blinks blue every 3 seconds.

1.3.5 MQTT

The device has a built in MQTT client and this tab is used to configure parameters needed for this communication.

When the MQTT service is enabled and the built in polling is enabled, JSON frames with basic information about the

tag is sent to the MQTT server. Please read MQTT interface description for more information about this interface and

frame format.

12

Figure 7 Web Interface - the MQTT client configuration tab.

The picture below shows an example of a JSON frame received in a Node-RED system.

Figure 8 Node-Red – the MQTT client + JSON frame example

1.3.6 REST API interface

The device can also send frames in JSON format over REST API using the POST method. The user has to setup URL and

authorization details if needed. This service also needs to have built in polling mode enabled. HTTPS protocol is also

available but not recommended because of device performance. If it is used it is recommended to setup polling delay

when the tag is detected.

13

Figure 1-7 REST API configuration tab

1.3.7 Web sockets

In a similar way to the MQTT protocol, the device can send JSON messages over Web Sockets. If this service is enabled

and built in polling is enabled, JSON frames can be handled using a Web socket with address

ws://<device ip address>/<web socket name> eg. ws://172.16.16.62/wscomm.cgi.

Figure 9 Web Interface – the Web socket configuration

1.4 Miscellaneous options

On this page, the user can set up the internal logs and sleep mode (details in Chapter 6). Logs are the same as displayed

on the console by default forwarded on the UART2. But if the user doesn’t have access to the UART2 header or it is

complicated to connect any device to capture the logs internal memory of the device can be used as a buffer for the

14

logs. The device is able to collect 6 files (numbers 0 to 5) and each of these files is maximally 10kb long. The new file is

created on each restart with the name Log_0.txt but previous files are shifted and the oldest one is deleted. If the size

of the current log is greater than 10kb the device creates the new file and deletes the oldest one.

List of the fails are available on the Status page.

The recommended way to view the files is to open the file in a new tab and refresh the content if needed (F5 or Ctrl+F5

for most browsers).

15

To make the log files easier to analyze user can enable SNTP – network time protocol client and set up the correct time

zone. Then all lines in the logs come with an extra timestamp header.

1.5 Status

This page provides information about the current firmware version, and basic information about the TAGs in range of

the antenna. Keep in mind that built in polling must be enabled to get information from the tags. The clear page

button will clear all readings. On status page you can also check information about memory available in the reader.

Figure 10 Web Interface – the Status page

1.6 Firmware upgrade

In the Upgrade tab, the user is able to upgrade the reader firmware. There are two options: select the binary file to

upload, or make an OTA Upgrade (Over The Air), which is a powerful feature of the Pepper C1. By clicking the OTA

Upgrade button, the firmware file will be downloaded directly from our website www.eccel.co.uk to the reader flash

memory and a firmware update will be performed. Each time the user visits the Upgrade tab, they will see information

about the availability of the latest firmware version.

Figure 11 Web Interface – the Firmware upgrade tab

http://www.eccel.co.uk/

16

1.7 Backup & Restore

In this tab the user can backup settings to the JSON file. This is a human readable format and therefore can be modified

by the user. The backup file can be uploaded to any device with firmware higher than 2.0. and overwrites current

settings in the device.

Figure 1-10 Backup & Restore tab

17

2. Rescue mode and factory reset

If the user forgets the password to the module or if the settings for the Wi-Fi need to be updated, the Pepper C1 device

provides two modes to resolve this situation: the rescue mode and factory defaults reset.

2.1 Rescue mode

This mode is dedicated specifically to update Wi-Fi connection settings or to access the web interface when the Wi-Fi

is disabled. To enable this mode please follow this steps:

• Power up device.

• Press the button and hold it for about 5 seconds (for the C1 module please connect GPIO0 to the GND pin) –

device blinks red every 1 second, release the button when device blinks white. Do not hold the button longer

if you don’t want to perform the full factory reset.

• The device should be available as an Access Point with the name Pepper_C1-xxxxxx (or Pepper_C1-MUX-

xxxxxx). If the user has already provided a password for Wi-Fi connection, then this password needs to be

entered in order to access the device. If a password has not yet been inputted by the user, then the device will

be open and will not require any password for access.

2.2 Automatic rescue mode

From firmware version 1.5 onwards, the Pepper C1 family is able to detect some faulty configurations and software

problems automatically. If the device is not able to run for more than 15 seconds with the selected settings and keeps

restarting, it runs in safe mode with all services turned off with only Wi-Fi and web interface running (if enabled in the

configuration - if not the user can enable it by holding the button for three seconds.). The user will be informed about

this situation by a message in the browser when the web interface is launched.

2.3 Resetting module to factory defaults

If the user wants to erase all settings stored in the device to factory defaults including Wi-Fi settings, communication

settings and known UIDs, then the steps below need to be followed:

• Power up the device

• Press the button and hold it for about 10 seconds (for the C1 module please connect GPIO0 to the GND pin)

• Release the button when the device blinks green (for the C1 module disconnect GPIO0 from the GND pin)

• The device should reboot itself and should be available for the user with default settings

18

3. Sleep mode

The device is able to enter into sleep mode to reduce current consumption. This mode should be configured in the

Web Interface on the Misc tab.

Since firmware 2.54, the device supports two sleep modes: Deep Sleep and Light Sleep. The Deep Sleep offers higher

energy savings, however the wake-up time is approximately 400ms. In contrast, the Light Sleep mode consumes

around 700uA more current, but significantly reduces the boot time to 50ms.

In Light Sleep mode, users can also take advantage of the Low Power Card Detection (LPCD) function. This feature,

integrated into the RFID chip, enables tag detection while the reader’s MCU remains in Light Sleep mode. Users can

additionally configure how frequently the chip polls the antenna to check for tags.

The device can enter Sleep mode in the following ways:

• No TAG in the field for X seconds – the device will enter into sleep mode after this defined time.

• TAG is detected – the device will enter into sleep mode immediately upon detecting a TAG in the field.

• The ‘Sleep’ command is received over a communication interface (this method does not require a jumper)

19

Important notice!

To enable Sleep mode, place a jumper the J1 header between pins specified in the Web Interface. In some sleep mode

configurations, the reader may enter sleep so quickly that it becomes impossible to access the Web Interface within

the available time. In such cases, the jumper must be removed to prevent the device from entering Sleep mode.

Please note that Sleep mode is not supported on the Pepper C1 MUX hardware.

All of the methods listed above can be used simultaneously. For example, the device may enter Sleep mode

immediately after detecting a tag, or after the predefined timeout period.

The device can exit Sleep mode in the following ways:

• LPCD polling – when an object (a TAG or some metal object) is detected in the antenna field,

• Timeout expiration – after the defined time period has elapsed,

• UART2 activity – when a byte is received on the UART2 RX port. Note that this byte will be ignored, and a

delay of at least 500 ms (after Deep Sleep) and 150 ms (after Light Sleep) is required before sending any valid

command through the UART interface. The best way is just to send the Dummy Command every 10 ms or so

and wait for the answer from the reader,

• Button press – by pressing the built-in button,

• GPIO control – by configuring GPIO4 or GPIO2 (available on the J1 header) to change state (LOW/HIGH). The

GPIO assignment depends on the hardware version.

20

4. JSON interface for MQTT and WebSocket protocols

When MQTT client or WebSocket interface is configured in the web configurator and it is connected to the server the

Pepper C1 can send and receive frames in JSON format as described below.

4.1 Status frame

This frame is sent by the device to the server about the current status of the device. Currently it is only one frame with

status startup.

Example:

{
 "type": "startup",
 "device_name": "Pepper_C1-1A64D5"
}

4.2 RFID frame

When RFID polling is enabled, the device sends information about the currently detected TAG.

Example:

{
 "type": "uid",
 "uid": "D89A7424",
 "sak": 8,
 "string": "MIFARE Classic 1k/Plus 2k",
 "device_name": "Pepper_C1-1A64D5",
 "memory": "00112233445566770011223344556677",
 "known_tag": false
}

4.3 UART passthru frame

When passthru mode for UART2 is active, the device sends data received from the UART port to the server using frame

with type set to “uart”. This method of communication can be used to transmit only text frames. If the host wants to

use binary over UART2, then binary communication protocol should be used instead.

Example:

{
 "type": "uart",
 "device_name": "Pepper_C1-1A64D5",
 "msg": "Hello world!!!"
}

21

4.4 Event frame

This frame can be used by the host to send requests to the device. Using a different event type, the host can request

the GPIO state, toggle the GPIO pin, or send text data to the UART2 interface. If field device_name is defined then it is

used to verify if it is the same as defined for this device and frame is ignored if it is not equal.

4.4.1 Set GPIO high/low

This frame requests the state on the GPIO pin (similar to CMD_GPIO). The host is limited to use only GPIO numbers

4,5,16,17 and 25,27 if UART2 is disabled.

Example:

{
 "event": "high",
 "gpio": 4
}

4.4.2 Toggle GPIO high/low

This frame requests the toggle state on the GPIO pin (similar to CMD_GPIO) for a time specified in the field “time”.

The host is limited to use only GPIO numbers 4,5,16,17 and 25,27 if UART2 is disabled.

Example:

{
 "event": "toggle_low",
 "gpio": 4,
 "time": 250
}

4.4.3 UART passthru event

This frame forwards a text message from the “msg” field to the UART2. This frame is similar to toggle state on the GPIO

pin (similar to CMD_GPIO) for a time specified in the field “time”.

Example:

{
 "event": "uart",
 "msg": "I’m here"
}

4.4.4 LED event

This frame can be used to set or toggle custom colour on the built-in RGB LED. If the field time is defined then the

device sets LED colour to defined by r,g,b parameters and then turn it of after number of milliseconds defined by time

parameter.

Example (set RED colour on LED for one second):

22

{
 "event": "led",
 "r": 255,
 "g": 0,
 "b": 0,
 "time": 1000
}

4.4.5 Read tag command

This frame can be used to read Mifare Classic, Ultralight (NTag), and ICODE tags. For Mifare Classic tags user can specify

key number and key type to pass Mifare authorization.

Example:

{
 "event":"read",
 "count":1,
 "address":2,
 "key_type":"A",
 "key_no":0
}

Answer from the device:
{
 "type":"ack",
 "event":"read",
 "data":”11223344556677889900112233445566”,
 "device_name":”Pepper_C1-AABBCC”
}

4.4.6 Write tag command

This frame can be used to write Mifare Classic, Ultralight (NTag), and ICODE tags. For Mifare Classic tags user can

specify key number and key type to pass Mifare authorization.

Example:

{
 "event":"write",
 "count":1,
 "address":2,
 "key_type":"A",
 "key_no":0,
 "data":”11223344556677889900112233445566”
}

Answer from the device:
{
 "type":"ack",
 "event":"write",
 "device_name":”Pepper_C1-AABBCC”
}

23

5. Communication interface – binary interface

5.1 Overview

The Pepper C1 can be controlled using a simple binary protocol available over USB, UART0 or UART2 (using the built in

USB-TTL converter) or a TCP IP socket. This binary protocol was designed to be as simple as possible to implement on

the host side whilst still providing robust communication.

The default configuration provides communication over USB with the following parameters:

• Baud rate: 115200bps

• Data: 8 bit

• Parity: None

• Stop bits: 1 bit

• Flow Control: none

The baud rate can be changed in the Web Interface from 9600 up to 921600. The same settings can be applied when

communication is switched to UART2.

When communication is set to TCP, the device’s built in internet protocol socket module acts as a TCP server and

listens for connection by default on port 1234. Only one active TCP connection is allowed to the module. The module

has a built in 15 second timeout for connection, so if the host doesn’t send any frame for this period, the connection

will be closed on the server side. To avoid this, the user should send any frame to the module (e.g.

DUMMY_COMMAND).

5.2 Frame structure

Communication with the module is symmetric so frames sent to, and received from the module are coded in the same

way. All frames contain fields as described in the table below.

Frame STX
Command body
length + 2bytes

CRC

Command length
XOR

Command body CRC16

1 byte 2-bytes 2-bytes 1-byte n-bytes 2-bytes

0xF5

Command body
length, LSB,

maximum value
1024

XOR with 0xffff
of command
length bytes

Command
Command

parameters
Command body

CRC, LSB

24

5.3 CRC calculation

CRC is a 16-bit CRC-CCITT with a polynomial equal to 0x1021. The initial value is set to 0xFFFF, the input data and the

output CRC is not negated. In addition, no XOR is performed on the output value. Example C code is shown below.

static const uint16_t CCITTCRCTable [256] = {

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5,

0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b,

0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210,

0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,

0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c,

0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401,

0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b,

0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,

0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6,

0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738,

0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5,

0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,

0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969,

0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96,

0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc,

0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,

0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03,

0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd,

0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6,

0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,

0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a,

0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb,

0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1,

0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,

0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c,

0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2,

0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb,

25

0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,

0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447,

0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8,

0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2,

0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,

0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9,

0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827,

0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c,

0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,

0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0,

0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d,

0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07,

0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,

0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba,

0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74,

0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 };

static uint16_t GetCCITTCRC(const uint8_t* Data, uint32_t Size) {

uint16_t CRC;

uint16_t Temp;

uint32_t Index;

if (Size == 0) {

return 0;

}

CRC = 0xFFFF;

for (Index = 0; Index < Size; Index++){

Temp = (uint16_t)((CRC >> 8) ^ Data[Index]) & 0x00FF;

CRC = CCITTCRCTable[Temp] ^ (CRC << 8);

}

return CRC;

}

26

5.4 Pepper C1 Client – PC application

Eccel provides the Pepper C1 Client – the PC application written in QT (source code available) to easily test all

commands with the Pepper C1 reader over the binary protocol.

The C1 Client can be downloaded here:

https://eccel.co.uk/wp-content/downloads/Pepper_C1/C1-client.zip

Figure 12. C1 Client

https://eccel.co.uk/wp-content/downloads/Pepper_C1/C1-client.zip

27

6. WPAN interface

6.1 WPAN Serial Port Profile

The Pepper C1 is able to work over WPAN using Serial Port Profile. This protocol has been available since firmware

version 1.3. However in version firmware version 1.4 onwards we have changed how SPP is enabled. From firmware

version 1.4 onwards, this protocol can be enabled only in the web interface on the communication tab.

The default PIN is ‘0000’. The communication protocol, frame format, and commands are exactly the same as for the

other communication interfaces. Wi-Fi interface is no not accessible in this mode.

6.2 WPAN Low Energy GATT service

From firmware version 1.4 onwards, the Pepper C1 also supports the WPAN Low Energy standard over GATT services.

For this purpose, a special custom service is available with two characteristics, one for write and one for read with

notification when new data is available.

• Service: f03c26b1-3fb1-4d67-912e-4ae31159aef0

• Write characteristics: f03c26b2-3fb1-4d67-912e-4ae31159aef0

• Read characteristics: f03c26b3-3fb1-4d67-912e-4ae31159aef0

This communication method can be enabled in the web interface or temporarily in order to configure the device using

the dedicated ‘Pepper C1 configurator’ application available in the Google Play store or in the Apple App Store. To

enable this mode without web interface, the user can press the built-in button three time quickly and then the device

will switch temporarily to this mode until there is a power cycle. This temporary mode is confirmed by one blue blink

on the built-in LED. Because of the slow speed, this is not a recommended method to upgrade the firmware.

To enable Wi-Fi mode please hold built-in button for 3 seconds.

6.2.1 WPAN Low Energy GATT as an additional interface

If an application needs to combine the WPAN LE feature with other communication methods like UART or TCP

communication, then the user can set up the reader to use WPAN LE interface at the same time when other services

are running. But because of memory limits, some features may not be available at the same time. To make it possible,

the web interface is shut down 1 minute after boot up if it is not used within this time. After the first minute and after

the web interface is disabled, the WPAN service becomes available. The device will blink blue every 3 seconds to show

that the WPAN LE service is waiting for the web interface to become disabled.

6.3 WPAN LE HID profile

From firmware version 1.4 onwards, the Pepper C1 also provides WPAN Low Energy HID support. Thanks to this profile,

the user can pair the Pepper C1 to a PC or smartphone like one would a normal keyboard and, if polling mode is

enabled, the reader will send a key sequence corresponding to the UID (unique serial number) read from the TAG. On

28

the configuration page, the user can also enable an extra ENTER key after each UID sent to the host to separate a string

of UID reads to make it more legible.

To enable Wi-Fi mode please hold the built-in button for at least 3 seconds.

6.4 WPAN bridge extension

From firmware version 2.36 onwards, the Pepper C1 supports a new functionality called WPAN bridge extension.

Thanks to this extension the user can send/receive RAW data to the devices connected to BT SPP or WPAN LE

interface.

WPAN bridge extension option in web interface

When this mode is enabled, the device does not parse the frames transmitted over the WPAN interface using binary

protocol, but all frames are transmitted from the WPAN interface to the binary interface used in the device and this

can be UART or TCP. See the diagram.

When the host software wants to transmit any data to the WPAN device connected to C1 WPAN interface then it needs

to send a WPAN data frame (0x15) with requested data. In the opposite direction, if the external application connected

to the WPAN interface sends anything to the device, the data will be received as an ASYNC frame on the binary

interface.

UART or TCP + binary protocol

using WPAN DATA frames
WPAN LE or

WPAN SPP

interface raw data

29

7. RS-485 Communication

From firmware version 1.4 onwards, two new protocols are available dedicated specially for RS-485 connection:

Modbus RTU and Extended binary protocol. Both are available only on the Pepper Wireless C1 RS-485 hardware.

Figure 13 RS-485 pinout

7.1 Modbus RTU

If this communication is selected in the web interface, the device can be connected to a Modbus network as a slave

device with an address that is also configured in the web interface. Because Modbus communication API is different

to the default Pepper C1 protocol, special registers and commands are used to communicate with the reader. But the

command and response format is exactly the same as described in the protocol description of this manual.

Function Command Address range

Request to the reader Write Holding register (0x10) 0-127

Response from the reader Read Input register (0x04)
0-127
0 – response length
1-n – response bytes

Get polling UID Read Input Register (0x04)
128 – 139
128 – UID len
129 – 139 - UID

Antenna idx (only for multiplexer
version, from firmware version 1.7)

Read Input Register (0x04) 138

The Write Holding Register (0x10) is used to write a command to the device. For example, if the host wants to write

the command GET_UID, (one byte 0x02) then they must execute the command Write Holding Register to address 0x00,

value 0x02 with length 1. The device sends a confirmation indicating the success or otherwise of the write operation.

30

Then the host system should Read Input Register (command 0x04) at address 0x00 to get the length of the response

and then read the response from address 0x01. If the length value is 0, then the response is not yet ready.

The Holding and input registers are 16-bit registers words, but every register stores only one byte from the command

and response.

To optimize communication, one special register is created at address 128. It is a 9-bytes long register containing

current length + UID of the TAG placed within range of the reader’s antenna when internal polling is enabled. So, if

the host application wants just to read the RFID tag UID, then this register should be checked to get valid values.

Example below demonstrate scenario described above including all bytes included in the Modbus protocol.

HOST => Write Holding Register, command GET_UID 0x02:
0x01 – Slave address
0x10 – Write Holding Register command
0x00 0x00 – Write address
0x00 0x01 – quantity of registers (every register is 16bits long)
0x02 – bytes count
0x00 0x02 - data to write – GET UID command
0x27 0x91 - Modbus CRC

READER => Write Holding Register confirmation

0x01 - slave address
0x10 - Write Holding Register command
0x00 0x00 - Write address
0x00 0x01 - quantity of registers (every register is 16bits long)
0x01 0xC9 - Modbus CRC

HOST=> Read Input Register (reading response length + response body in one read)

0x01 - slave address
0x04 - Read Input Registers command
0x00 0x00 – Start Address
0x00 0x04 - quantity of registers (every register is 16bits long)
0xF1 0xC9 - Modbus CRC

READER=> Response length + body

0x01 - slave address
0x04 - Read Input Registers command
0x08 - 8 bytes response (4 registers, 16bits each)
0x00 0x03 - reader response length
0x00 0x00 0x00 0x02 0x00 0x01 - three bytes of response stored in 16bits registers

0x00 0x00 - ACK
0x00 0x02 - GET_UID response
0x00 0x01 - 1 tag found

0x77 0x0D - Modbus CRC

31

7.2 Binary protocol over RS-485

Because in some cases the binary protocol can be more convenient to use since firmware v1.4 device supports binary

protocol extended with address byte. Thanks to this the host can use normal binary protocol but keep the addressing

option like in the Modbus protocol. The address of the device is the first byte in the command body.

The length of the command is the sum of the Address byte + Command body + 2 bytes CRC. See table below.

Frame STX
Command

length
Command
length XOR

Address byte + Command body CRC16

1-byte 2-bytes 2-bytes 1-byte 1-byte n-bytes 2-bytes

0xF5

Command
body length,

LSB,
maximum
value 1024

XOR with
0xffff

of command
length bytes

Address byte Command
Command

parameters
Address + Command

body CRC, LSB

32

8. Key storage

To perform some operations on TAGs authority keys maybe required. The user can set these keys using the SET_KEY

command anytime this is required. However it is also possible store up to 5 keys in non-volatile memory and the

module will then load these keys after bootup.

Storing keys in memory can be done in two ways: In the HTTP interface on the RFID tab and by using commands.

In the latter scenario, the command SET_KEY needs to be executed to save a KEY in volatile memory temporarily and

then execute the SAVE_KEYS command to save these keys to non-volatile memory. Please refer to these commands

for full details.

The key storage can be also managed in the web interface under RFID->Key storage tab.

Figure 14 Web Interface – Key storage TAB

33

9. Polling mode

In this mode the Pepper C1 device executes the continuous repeated enumerate tags UID command. Depending upon

the polling settings in the web interface, the module can execute some actions as described below. Because the

module has built in memory, the user can store known UIDs, and polling mode can trigger different actions depending

upon whether the UID is stored in the memory or not. (Whitelist)

This mode needs to also be activated in order to send frames using the MQTT client and to the WebSocket interface.

These modes are enabled in the Web Interface.

9.1 Web configuration for polling mode

All feature related with polling can be configured in Web Interface under RFID->Polling tab.

Figure 15 Web Interface – polling configuration tab

As shown in Figure 15 above, you can configure different actions for a defined tag (stored in device memory) and

undefined. Both actions have five parameters to configure:

34

9.1.1 Supported technologies

From version 1.5 onwards, the user can select what transponder technology is supported by the reader, MIFARE/Ntag

and ICODE technology. Due to this option polling time is shorter and the device can be used with only one of the above

two technologies when fastest transponder read performance is needed.

9.1.2 RFID power settings

From version 2.40 onwards, the user can change maximum output power on the RFID antenna. If AUTO is selected

then the device is using dynamic power control function to provide optimum power for the antenna. But if the user

need to reduce RFID power to reduce the range or to limit RF emission then lower power settings can be selected from

seven predefined levels where 7 is the maximum power on the antenna and 1 is minimum power.

9.1.3 Polling loop settings

These settings are related to the polling period for the RFID loop. By default the reader checks TAGs in range every

200ms. From version 1.5 onwards, the user can specify “Ignore timeout” parameter. Thanks to this timeout when the

same TAG is detected in rage of the antenna it will be ignored. If the TAG is presented to the antenna before the

selected ignore same tag timeout has expired, then the timeout is restarted.

9.1.4 Read memory settings

From firmware version 1.5 onwards, the Pepper C1 family supports reading memory content during the polling mode.

This is useful if the user wants to read memory content + UID. The content of the memory is reported in two ways

now:

- When Asynchronous packet is selected to Plain text or JSON format

- Attached to JSON frames sent over MQTT and Web sockets.

Depending upon the transponder technology, the reader can read pages or blocks from MIFARE Classic with

authorization, and other tags like Ultralight, NTAG tags and ICODE when the memory is not protected.

9.1.5 Polling events

The user can set up some automatic actions assigned to the reading events. Depending upon whether the TAG is stored

on the known list or not, different events can be triggered. For both scenarios, the user can setup these fields:

• GPIO - user can select one of the dedicated GPIO to perform an action

• GPIO action – there are two options: toggle LOW or HIGH. If the configured action is to toggle HIGH, then the

selected GPIO remains LOW until the event occurs and then toggles HIGH for a time defined in the Timeout

field. If the selected action is to toggle LOW, then the GPIO remains HIGH until the event occurs and then

toggles LOW.

• Asynchronous packet – the device can send packets over the communication protocol selected in the

communication tab. Three packet options are available:

35

o Binary packet format – with these settings, the module sends the frame in the binary protocol format.

This is the best method if the user already uses binary protocol as the selected communication

method. Here is an example:

Byte no. 0-4 5 6 7 8 9…

Last

two

bytes

Description
Command

header

0xFE

CMD

ASYNC

0x03

CMD

Get

UID

Card type:

0x00 - ISO14443A

0x10 - ISO15693

SAK

or

DSFID

UID

(4, 7 or 8 bytes)
CRC16

Example frame in the binary protocol format:

F5 0A 00 F5 FF FE 03 01 08 54 D4 F8 2A 73 64

F5 0A 00 F5 FF – command header

FE – CMD ASYNC (fixed value)

03 – CMD GET UID (fixed value)

01 - ISO/IEC 14443 Type A

08 - MIFARE Classic 1k (SAK value – 0x08)

54 D4 F8 2A – UID (4 bytes long)

73 64 – CRC16

o Plain text – the device sends text strings with basic information about the TAG eg:

UID:54D4F82A; TYPE:1; KNOWN:0<\r><\n> (standard Pepper C1)

UID:54D4F82A; TYPE:1; ANTENNA: 1; KNOWN:0<\r><\n> (Pepper C1 MUX)

o JSON frame – the module sends a JSON string using the configured communication method. This is the

best option if you want to connect this device to IOT systems. Example below

Figure 16 JSON frame example

o Custom text format – since firmware version 2.42 the device is capable to send a text format frame

for RFID event defined by the user. To specify the custom frame format the user can use special macros

in the format defined below:

o

36

o %u - tag UID

o %a - antenna index

o %m - memory content (only if reading memory is setup correctly)

o %i - idx msg/tag counter since restart

o %t - timestamp in milliseconds

o %T - tag type 1-Mifare family, 16 - ICODE

o %p - tag parameter. SAK for Mifare family and DSFID for ICODE

o <CR> - Carriage return

o <LF> - Line feed

Example 1:

Format:

Uptime:%t, idx:%i, ant:%a, sub:%s, uid:%u<CR><LF>

Output:

Uptime:2713, idx:2, ant:0, sub:ICODE SLI, uid:E004010042286400
Uptime:13114, idx:3, ant:0, sub:MIFARE Classic 1k/Plus 2k, uid:438076F7

Example 2:

Format:

[%t]UID:%u<CR><LF>

Output:

[2321]UID:E004010042286400
[4094]UID:438076F7

• Built in LED – the user can configure the device to toggle the LED in selected colours (Red, Green, Blue,

White)

• Timeout – time used for toggling the GPIO action and LED

9.1.6 Extra settings for MUX device

Figure 176 Web Interface – extra settings for MUX devices

37

For MUX devices users can configure extra settings such as which active antennas are active, and since version

2.53, the new feature called "Known tag on all antennas" has been added. Due to this feature, the MUX device

triggers GPIO and LED events as a “Defined tag event” only when known tags are detected on all active

antennas. This can be useful eg. if you have a machine with covers/doors that have to be closed before running

the machine. To add known tags on the MUX device please go to the known tag tab in the web interface list

and add tag UIDs manually, or import them from a file (see section 9.2 to see how to import tags from a file).

To add it manually please use the first active antenna on the device.

9.2 Known UID list

This tab in the web interface is used to manage known UIDs stored in the device memory. Thanks to this, in standalone

mode, the Pepper C1 can perform different actions for known and unknown UIDs. For MUX devices the user should

use the first active antenna.

Figure 18 Web Interface – know UID list

The UID list can be exported to the CSV file and then imported from the file to other devices. If needed user can

modify the files as it is simple text file that can be edited easily using any text editor.

38

10. Commands list

Commands are exchanged with the module using the protocol described above. All frames contain a command byte

and command arguments. Depending upon the command, arguments can be optional, so a command length can be in

the range from 1-1024 bytes.

10.1 Generic commands

10.1.1 Acknowledge frame (0x00)

This is the response message from the module to the host. This frame always contains 1-byte with command ID and

optional arguments.

Command description:

Argument Size Value Description

Command ID 1 0x00

Related command ID 1 X Related command code

Other parameters n X
Depending on the requested command this parameter is n-bytes long
and contains parameters

Example:

HOST=>C1: 0x02 – GET_TAG_COUNT command

C1=>HOST: 0x00 - ACK byte
 0x02 - related command code GET_TAG_COUNT
 0x01 – argument for GET_TAG_COUNT – 0x01 – one tag detected

10.1.2 Error response (0xFF)

In case of any problems with executing the command, the device can send back ERROR response with error number

returned by the RFID chip. The most common errors are described below.

Command description

Argument Size Value Description

ERROR 1 0xFF

Command ID 1 0x01 DUMMY_COMMAND

Example:

C1=>HOST: 0xFF – Error byte
 0x01 - related command code DUMMY_COMMAND
 0x02 – layer byte
 0x01 – Error number

39

Here is a list with the most common errors:

MIFARE DESFire errors – layer byte 0x19

Error byte:
0x80 - MF DF Response - No changes done to backup files
0x81 - MF DF Response - Insufficient NV-Memory
0x82 - MF DF Invalid key number specified
0x83 - MF DF Current configuration/status does not allow the requested command
0x84 - MF DF Requested AID not found on PICC
0x85 - MF DF Attempt to read/write data from/to beyond the files/record's limits
0x86 - MF DF Previous cmd not fully completed. Not all frames were requested or provided by the PCD
0x87 - MF DF Num. of applns limited to 28. No additional applications possible
0x88 - MF DF File/Application with same number already exists
0x89 - MF DF Specified file number does not exist
0x8A - MF DF Crypto error returned by PICC
0x8B - MF DF Parameter value error returned by PICC
0x8C - MF DF DESFire Generic error. Check additional Info
0x8D - MF DF ISO 7816 Generic error. Check Additional Info

ICODE specific errors – layer byte 0x15

Error byte:
0x01 - The command is not supported, i.e. the request code is not recognized
0x02 - The command is not recognized, for example: a format error occurred
0x03 - The command option is not supported
0x0F - Error with no information given or a specific error code is not supported
0x10 - The specified block is not available (doesn't exist)
0x11 - The specified block is already locked and thus cannot be locked again
0x12 - The specified block is locked and its content cannot be changed
0x13 - The specified block was not successfully programmed
0x14 - The specified block was not successfully locked
0x15 - The specified block is protected
0x40 - Generic cryptographic error
0x81 - The command is not supported, i.e. the request code is not recognized
0x82 - The command is not recognized, for example: a format error occurred
0x83 - The command option is not supported
0x84 - Error with no information given or a specific error code is not supported
0x85 - The specified block is not available (doesn't exist)
0x86 - The specified block is already locked and thus cannot be locked again
0x87 - The specified block is locked and its content cannot be changed
0x88 - The specified block was not successfully programmed
0x89 - The specified block was not successfully locked
0x8A - The specified block is protected
0x8B - Generic cryptographic error

40

Other layers errors:

0x01 - No reply received, e.g. PICC removal
0x02 - Wrong CRC or parity detected
0x03 - A collision occurred
0x04 - Attempt to write beyond buffer size
0x05 - Invalid frame format
0x06 - Received response violates protocol
0x07 - Authentication error
0x08 - A Read or Write error occurred in RAM/ROM or Flash
0x09 - The RC sensors signal over heating
0x0A - Error due to RF.
0x0B - An error occurred in RC communication
0x0C - A length error occurred
0x0D - An resource error
0x0E - TX Rejected sanely by the counterpart
0x0F - RX request Rejected sanely by the counterpart
0x10 - Error due to External RF
0x11 - EMVCo EMD Noise Error
0x12 - Used when HAL ShutDown is called
0x20 - Invalid data parameters supplied (layer id check failed)
0x21 - Invalid parameter supplied
0x22 - Reading/Writing a parameter would produce an overflow.
0x23 - Parameter not supported
0x24 - Command not supported
0x25 - Condition of use not satisfied
0x26 - A key error occurred
0x7F - An internal error occurred
0xF0 – Protocol authorization error. This command is not allowed without protocol authorization (Command 0x12)

41

10.1.3 Dummy command (0x01)

This command takes no arguments. It is used to check that the module alive. The module replies to this command with

an ACK response and no optional parameters.

Command description

Argument Size Value Description

Command ID 1 0x01 DUMMY_COMMAND

Response description

ACK 1 0x00

Command ID 1 0x01 DUMMY_COMMAND

Example:

HOST=>C1: 0x01 –DUMMY_COMMAND

C1=>HOST: 0x00 - ACK byte
 0x01 - related command code DUMMY_COMMAND

10.1.4 Get tag count (0x02)

The command send to the module to read how many TAGS are in range of the antenna no matter which technology

of tag, so it returns the total amount present of all supported tag types. The maximum number for this standard

discovery loop is 5. If you want to perform a full inventory command for ICODE tag types please refer to

ICODE_INVENTORY_xxx commands.

After this command, the module holds all UID’s and basic information about TAGs present in volatile memory and the

user can read it using the GET_TAG_UID command.

Command description

Argument Size Value Description

Command ID 1 0x02 GET_TAG_COUNT

Response description

ACK 1 0x00

Command ID 1 0x02 GET_TAG_COUNT

TAG count 1 X Maximum discovered tags is 5

Example:

HOST=>C1: 0x02 – GET_TAG_COUNT

C1=>HOST: 0x00 - ACK byte
 0x02 - related command code GET_TAG_COUNT
 0x01 – number of tags in range

42

10.1.5 Get tag UID (0x03)

This command should be executed after GET_TAG_COUNT frame to read information about the tag.

Command description

Argument Size Value Description

Command ID 1 0x03 GET_TAG_UID

TAG idx 1 X
TAG index in module memory, must me less than number of tags
reported by GET_TAG_COUNT command

Response description

ACK 1 0x00

Command ID 1 0x03 GET_TAG_UID

TAG type 1 X

0x01 - MIFARE Ultralight
0x02 - MIFARE Ultralight-C
0x03 - MIFARE Classic
0x04 - MIFARE Classic 1k
0x05 - MIFARE Classic 4k
0x06 - MIFARE Plus
0x07 - MIFARE Plus 2k
0x08 - MIFARE Plus 4k
0x09 - MIFARE Plus 2k sl2
0x0S - MIFARE Plus 4k sl2
0x0B - MIFARE Plus 2k sl3
0x0C - MIFARE Plus 4k sl3
0x0D - MIFARE DESFire
0x0F - JCOP
0x10 – MIFARE Mini

0x21 – ICODE SLI
0x22 – ICODE SLI-S
0x23 – ICODE SLI-L
0x24 – ICODE SLIX
0x25 – ICODE SLIX-S
0x26 – ICODE SLIX-X
0x27 – ICODE SLIX2
0x28 – ICODE DNA
0x42 – WPAN LE device UID
0x50 – WPAN LE PIN

TAG parameter 1 X
SAK - byte for MIFARE family tags
DSFID - byte for ICODE family tags

UID N X UID bytes. Max length is 8.

Example:

HOST=>C1: 0x03 – GET_TAG_UID
 0x00 – TAG idx

43

C1=>HOST: 0x00 - ACK byte
 0x03 - related command code GET_TAG_UID
 0x01 – MIFARE tag type
 0x20 – tag parameter:
 SAK byte for MIFARE family tags
 DSFID byte for ICODE family tags
 0x74 0x54 0x12 0x65 – tag UID bytes

10.1.6 Activate TAG (0x04)

The command executed to activate a TAG after the discovery loop if more than one TAG is detected.

Command description

Argument Size Value Description

Command ID 1 0x04 ACTIVATE_TAG

TAG idx 1 X
TAG index in module memory, must me less than number of tags
reported by GET_TAG_COUNT command

Response description

ACK 1 0x00

Command ID 1 0x04 ACTIVATE_TAG

Example:

HOST=>C1: 0x04 – ACTIVATE_TAG
 0x00 – TAG idx

C1=>HOST: 0x00 - ACK byte
 0x04 - related command code ACTIVATE_TAG

10.1.7 Halt (0x05)

The Halt command takes no arguments. It halts the tag and turns off the RF field. It must be executed at the end of

each operation on a tag to disable the antenna and reduce the power consumption.

Command description

Argument Size Value Description

Command ID 1 0x05 HALT

Response description

ACK 1 0x00

Command ID 1 0x05 HALT

Example:

HOST=>C1: 0x05 – HALT

C1=>HOST: 0x00 - ACK byte
 0x05 - related command code HALT

44

10.1.8 Set polling (0x06)

The module can’t perform polling mode and RFID requests over the communication channels simultaneously. When

polling is enabled and the host wants to request an RFID command, this command should be executed first with a STOP

parameter, and then START again if needed afterwards. This command does not change polling configuration

permanently, so after a reset, the module performs polling as configured in the Web Interface.

Command description

Argument Size Value Description

Command ID 1 0x06 SET_POLLING

Start/Stop 1 X
0x00 – Stop polling
0x01 – Start polling

Response description

ACK 1 0x00

Command ID 1 0x06 SET_POLLING

Example:

HOST=>C1: 0x06 – SET_POLLING
 0x00 – Stop polling temporary

C1=>HOST: 0x00 - ACK byte
 0x06 - related command code SET_POLLING

10.1.9 Set key (0x07)

This command sets a KEY in Key Storage Memory on a selected slot. Set key can be used for all RFID functions needing

authorization like e.g. READ/WRITE memory on the TAG etc. This command changes a key in volatile memory, so if the

user wants to save it permanently and load automatically after boot-up, then the user should use the CMD_SAVE_KEYS

command.

Command description

Argument Size Value Description

Command ID 1 0x07 SET_KEY

Key number 1 0-4 Key number in Key Storage Memory.

Key type 1 0 - 6

0x00 - AES 128 Key. (length = 16 bytes)
0x01 - AES 192 Key. (length = 24 bytes)
0x02 - AES 256 Key. (length = 32 bytes)
0x03 - DES Single Key. (length = 16 bytes)
0x04 - 2 Key Triple Des. (length = 16 bytes)
0x05 - 3 Key Triple Des. (length = 24 bytes)
0x06 - MIFARE (R) Key. (length = 12 bytes, key A+B)

Key 12-32 X Key bytes. Length must match to the type.

Response description

ACK 1 0x00

Command ID 1 0x07 SET_KEY

45

Example:

HOST=>C1: 0x07 – SET_KEY
 0x00 – Key number
 0x06 – MIFARE key type
 0x00 0x00 0x00 0x00 0x00 0x00
 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF – Key bytes

C1=>HOST: 0x00 - ACK byte
 0x07 - related command code SET_KEY

10.1.10 Save keys (0x08)

This command should be called if the user wants to save keys changed using the SET_KEY command in the module

non-volatile memory. Saved keys will be automatically loaded after power up or reboot.

Command description

Argument Size Value Description

Command ID 1 0x08 SAVE_KEYS

Response description

ACK 1 0x00

Command ID 1 0x08 SAVE_KEYS

Example:

HOST=>C1: 0x08 – SAVE_KEYS

C1=>HOST: 0x00 - ACK byte
 0x08 - related command code SAVE_KEYS

10.1.11 Network config (0x09)

This command should be used to setup or read network parameters. Depending upon the second byte of the

command, different parameters of the network configuration can be changed. Below is the full list of possible network

parameters. Also, the ACK response contains a byte detailing the parameters that have been set.

To read current settings the host should send the request without parameters, the ACK response contains current

settings of this requested field.

10.1.11.1 Setting Wi-Fi mode

 This command has one argument to setup Wi-Fi adapter mode to: Access Point, Client or Off. In the case of the Wi-Fi

adapter being disabled, the user needs to use this command again with different settings to enable it again or just

perform a factory reset.

46

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x00 Wi-Fi mode subcommand

Mode (optional) 1 X
0x00 – Access Point
0x01 – Client
0x02 – Wi-Fi adapter off

Response description

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x00 Wi-Fi mode subcommand

Mode (optional) 1 X Same as for request

Example1 – set mode:

HOST=>C1: 0x09 – NET_CFG
 0x00 – Wi-Fi mode subcommand
 0x01 – Client mode

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x00 – Wi-Fi mode subcommand

Example2 – get mode:

HOST=>C1: 0x09 – SET_NET_CFG
 0x00 – Wi-Fi mode subcommand

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x00 – Wi-Fi mode subcommand
 0x01 – Client mode

10.1.11.2 Wi-Fi authorization mode

This command gets one argument to setup Wi-Fi authorization mode. This setting is only applied in Access Point mode.

In client mode authorization is automatically detected.

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x01 Wi-Fi authorization mode subcommand

Mode 1

X 0x00 – Open
0x01 – WEP
0x02 – WPA PSK
0x03 – WPA2_PSK
0x04 - WPA_WPA2_PSK
0x05 - WPA2_ENTERPRISE

Response description

47

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x01 Wi-Fi authorization mode subcommand

Mode 1 X Same as for request

Example:

HOST=>C1: 0x09 – NET_CFG
 0x01 – Wi-Fi authorization mode subcommand
 0x03 – WPA2_PSK

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x01 – Wi-Fi authorization mode subcommand

10.1.11.3 Wi-Fi channel

This command gets one argument to setup the Wi-Fi channel. This setting is only applied in Access Point mode. In client

mode, the channel is automatically detected.

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x02 Wi-Fi channel subcommand

Channel (optional) 1 1-13 Channel number

Response description

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x02 Wi-Fi channel subcommand

Channel (optional) 1 1-13 Channel number

Example:

HOST=>C1: 0x09 – NET_CFG
 0x02 – Wi-Fi channel mode
 0x05 – channel number

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x02 – Wi-Fi channel mode

10.1.11.4 Wi-Fi network SSID

This command sets/gets the SSID for the Wi-Fi adapter. Depending upon mode configuration, this setting will be

applied to Access Point or Client.

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

48

Subcommand ID 1 0x03 Wi-Fi SSID subcommand

Channel(optional) 1-32 X SSID - network name

Response description

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x03 Wi-Fi SSID subcommand

Channel(optional) 1-32 X SSID - network name

Example:

HOST=>C1: 0x09 – NET_CFG
 0x03 – Wi-Fi SSID subcommand
 0x50 0x65 0x65 0x70 0x65 0x72 0x5f 0x43 0x31 - network SSID

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x03 – Wi-Fi SSID subcommand

10.1.11.5 Wi-Fi network password

This command sets/gets the password for the Wi-Fi network. Depending upon mode configuration, this setting will be

applied to Access Point or Client.

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x04 Wi-Fi SSID network password

Password(optional) 1-32 X Password

Response description

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x04 Wi-Fi SSID network password

Password (optional) 1-32 X Password

Example:

HOST=>C1: 0x09 – NET_CFG
 0x04 – Wi-Fi password subcommand
 0x61 0x64 0x6d 0x69 0x6e - network password

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x04 – Wi-Fi password subcommand

10.1.11.6 Network IP address mode

This command gets one argument to setup network address mode: DHCP client or static IP address. In the case of static

IP being selected, the user needs to provide IP addresses for the module IP, netmask, gateway and DNS.

49

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x05 IP address mode subcommand

Network address
mode(optional)

1 X
0x00 – DHCP client
0x01 – Static IP

Response description

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1 0x05 IP address mode subcommand

Network address
mode(optional)

1 X
0x00 – DHCP client
0x01 – Static IP

Example:

HOST=>C1: 0x09 – NET_CFG
 0x05 – IP address mode subcommand
 0x00 – Static IP address mode

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x05 – IP address mode subcommand

10.1.11.7 Network IP addresses

These four subcommands should be used to setup: IP address, netmask, gateway and DNS. If a DHCP client is enabled

with the command described above these settings are ignored.

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

Subcommand ID 1 X

0x06 – IP address
0x07 – netmask address
0x08 – gateway address
0x09 – DNS address

Address (optional) 4 X Address bytes

Response description

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1
0x06-
0x09

Address mode subcommand

Address (optional) 4 X Address bytes

Example:

HOST=>C1: 0x09 – NET_CFG
 0x06 – IP address subcommand
 0xC0 0xA8 0x00 0x02 – IP address 192.168.0.2

50

C1=>HOST: 0x00 - ACK byte
 0x09 - related command code NET_CFG
 0x06 – IP address subcommand

10.1.11.8 Web Interface user name and password (0x09)

This command should be used to setup the username and password needed to access the web interface. Default

settings for the username and password are admin/admin.

Command description

Argument Size Value Description

Command ID 1 0x09 NET_CFG

Subcommand ID 1 X
0x0A – User name subcommand
0x0B – password subcommand

User/password
(optional)

1-32 X Username/password bytes

Response description

ACK 1 0x00

Command ID 1 0x09 NET_CFG

Subcommand ID 1 X
0x0A – User name subcommand
0x0B – password subcommand

User/password
(optional)

1-32 X Username/password bytes

Example:

HOST=>C1: 0x09 – NET_CFG
 0x0B – Web password subcommand
 0x61 0x64 0x6d 0x69 0x6e – Web Interface password

C1=>HOST: 0x00 – ACK byte
 0x09 – related command code NET_CFG
 0x0B – Web password subcommand

10.1.12 Reboot (0x0A)

This command requests a software reboot for the Pepper C1 module. After this command the device will not accept

any protocol commands for 1 second. In case of communication over WiFi this time can be longer and depends upon

network configuration.

Command description

Argument Size Value Description

Command ID 1 0x0A REBOOT

Response description

ACK 1 0x00

Command ID 1 0x0A REBOOT

51

Example:

HOST=>C1: 0x0A – REBOOT

C1=>HOST: 0x00 – ACK byte
 0x0A – related command code REBOOT

10.1.13 Get version (0x0B)

This command requests a version string from the device.

Command description

Argument Size Value Description

Command ID 1 0x0B GET_VERSION

Response description

ACK 1 0x00

Command ID 1 0x0B GET_VERSION

Version string X X
Version string, contains major and minor version and build data and time
e.g.: 1.1 Jan 18 2019 15:35:03

Example:

HOST=>C1: 0x0B – GET_VERSION

C1=>HOST: 0x00 – ACK byte
 0x0B – related command code GET_VERSION

 0x31 0x2e 0x31 0x20 0x4a 0x61 0x6e 0x20
 0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x20
 0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 – version string bytes

10.1.14 UART passthru (0x0C)

This command is used to transmit and receive data to the UART2 port using binary protocol. Thanks to this the host

application can communicate with an external device attached to the UART2 port. This option can be really useful

when an application requires communication with an external device, and thanks to the built in WiFi interface, the

Pepper C1 can act as a bidirectional WiFi to UART bridge.

Command description

Argument Size Value Description

Command ID 1 0x0C UART_PASSTHRU

Data X X Data to pass over UART2 port

Response description

ACK 1 0x00

Command ID 1 0x0C UART_PASSTHRU

Data X X Data transmitted or received over UART2 port

Example:

HOST=>C1: 0x0C – UART_PASSTHRU
 0x31 0x2e 0x31 0x20 0x4a 0x61 – data bytes

52

C1=>HOST: 0x0C – UART_PASSTHRU
 0x34 0x2e 0x35 0x20 0x4b 0x60 – data bytes

10.1.15 Sleep command (0x0D)

This command requests the device to enter in to sleep mode. Please read the “Sleep mode” chapter to get more

information about this feature. To wake up the device user can send any byte or keep sending the DUMMY COMMAND

and wait for the correct response. Because of limits of the Pepper C1 MCU when this command is executed over

UART0/USB the device can enter only in to light sleep and power consumption is about 1mA. So if the application

needs maximum power saving it is recommended to use UART2 pins for communication and the device can enter in

to full deeps sleep mode.

Command description

Argument Size Value Description

Command ID 1 0x0D SLEEP

Response description

ACK 1 0x00

Command ID 1 0x0D SLEEP

Example:

HOST=>C1: 0x0D – SLEEP

C1=>HOST: 0x00 – ACK byte
 0x0C – related command code SLEEP

10.1.16 GPIO command (0x0E)

This command should be used to setup GPIO pins on the J1 header. The user can use the following GPIOs: 4, 5, 16, 17

(Pepper C1 v1) and 2, 21, 32, 33 (Pepper C1 v2). All of these pins can be used as inputs (with pull up/pull down option)

or as output pins. For the GPIO output command, the user doesn’t need to setup a pin as an output, this is done

automatically when the first command setting level or toggling level on the pin is requested. For the input command,

the host application should first setup the pin as input with option like pull up/down if needed.

Command description

Argument Size Value Description

Command ID 1 0x0E GPIO command

Subcommand ID 1 X

0x00 – setup pin as GPIO_INPUT
0x01 – setup pin as GPIO_INPUT with PULL_UP enabled
0x02 – setup pin as GPIO_INPUT with PULL_DOWN enabled
0x03 – setup pin as GPIO_OUTPUT with level HIGH
0x04 – setup pin as GPIO_OUTPUT with level LOW
0x05 – toggle GPIO low for specified time
0x06 – toggle GPIO high for specified time
0x07 – read GPIO pin status

53

GPIO number 1 X
GPIO number in hex format. Values allowed are 4,5,16,17 (Pepper C1 v1)
2,21,32,33 (Pepper C1 v2) and GPIO 25,27 if UART2 is disabled in the
configuration.

Toggle timeout 2 X
Optional bytes for TOGGLE_LOW/TOGGLE_HIGH subcommands. Number
of milliseconds defined as unsigned 16bit value with LSB order.

Response description

ACK 1 0x00

Command ID 1 0x0E GPIO command

GPIO level 1 X
Optional byte received when READ command is requested
0x00 – GPIO is in LOW state
0x01 – GPIO is in HIGH state

Example1 – setup GPIO17 as input port with pull up enabled:

HOST=>C1: 0x0E – GPIO command
 0x01 – input port with PULL UP enabled
 0x11 – GPIO17

C1=>HOST: 0x00 – ACK byte
 0x0E – related command code GPIO

Example2 – read state of GPIO32:

HOST=>C1: 0x0E – GPIO command
 0x07 – read pin status
 0x20 – GPIO32

C1=>HOST: 0x00 – ACK byte
 0x0E – related command code GPIO
 0x01 – HIGH value on the GPIO32

10.1.17 Set active antenna (0x0F) – Pepper C1 MUX only

This command sets the active antenna number. Available numbers are from 1 to 8.

Command description

Argument Size Value Description

Command ID 1 0x0F SET_ACTIVE_ANTENNA

Antenna number 1 X Number from 1 to 8

Response description

ACK 1 0x00

Command ID 1 0x0F SET_ACTIVE_ANTENNA

Antenna number 1 X Currently set antenna number

Example:

HOST=>C1: 0x0F – SET_ACTIVE_ANTENNA
 0x02 – select the antenna number 2

C1=>HOST: 0x00 – ACK byte
 0x0F – related command code SET_ACTIVE_ANTENNA

54

 0x02 – Currently set antenna number

10.1.18 WPAN pin command (0x10)

This command should be used to setup the PIN for the WPAN interface. Default PIN is ‘0000’. If you call this command

without any PIN parameter, then the device sends a response containing the current PIN settings.

Command description

Argument Size Value Description

Command ID 1 0x10 WPAN_PIN

PIN 4 X Four digits pin number (optional)

Response description

ACK 1 0x00

Command ID 1 0x10 WPAN_PIN

Current PIN 4 X

Example1 – setup new PIN:

HOST=>C1: 0x10 – WPAN_PIN
 0x31 0x32 0x33 0x34 – New pin value ‘1234’

C1=>HOST: 0x00 – ACK byte
 0x10 – related command code WPAN_PIN

Example2 – read current PIN:

HOST=>C1: 0x10 – WPAN_PIN

C1=>HOST: 0x00 – ACK byte
 0x10 – related command code WPAN_PIN
 0x31 0x32 0x33 0x34 – Pin value ‘1234’

10.1.19 Factory reset command (0x11)

This command should be user to perform a factory reset. To prevent resetting to factory default by accident, this

commands requires four extra bytes as extra parameters described in the table below.

Command description

Argument Size Value Description

Command ID 1 0x11 FACTORY_RESET

Extra bytes 4 0x01 0x02 0x03 0x04 Four digits pin number (optional)

Response description

ACK 1 0x00

Command ID 1 0x11 FACTORY_RESET _PIN

Example – setup new PIN:

HOST=>C1: 0x11 – FACTORY_RESET
 0x01 0x02 0x03 0x04 – Extra parameters

55

C1=>HOST: 0x00 – ACK byte
 0x11 – related command code FACTORY_RESET

10.1.20 Protocol authorization (0x12)
From firmware version 1.7 onwards, the Pepper C1 reader supports protocol authorization for wireless interfaces like

WPAN LE service and TCP client and server. This option helps to protect these interfaces from unauthorized access. If

this password is set in the configuration, then the user has to use this command every time in order to establish and

authorize a new connection with the reader, before executing other commands. Two commands are available for

executing without authorization "Dummy command" and "Get version". The Password can be set using this command

or by using the web interface.

Command description

Argument Size Value Description

Command ID 1 0x12 PROTOCOL_AUTH

Option 1 X
0x00 – login
0x01 – modify password
0x02 – query for password

Password 1-32 X Password for login or modify option

Response description

ACK 1 0x00

Command ID 1 0x12 PROTOCOL_AUTH

Password 1-32 X Optional password for option 0x02

Example – login procedure:

HOST=>C1: 0x12 – PROTOCOL_AUTH
 0x00 – login option
 0x31 0x32 0x33 0x34 0x35 0x36 0x37 – password bytes

C1=>HOST: 0x00 – ACK byte
 0x12 – related command code PROTOCOL_AUTH

Example – query for password:

HOST=>C1: 0x12 – PROTOCOL_AUTH
 0x02 – query for password

C1=>HOST: 0x00 – ACK byte
 0x12 – related command code PROTOCOL_AUTH
 0x31 0x32 0x33 0x34 0x35 0x36 0x37 – password bytes

10.1.21 Protocol configuration (0x13)

This set of frames can be used to setup all parameters for different communication methods. The first byte is the

subtype of the frame. To get current settings, the host has to send this frame with a subcommand ID only.

56

10.1.21.1 General settings

With this command the host can setup general settings for the device like MDNS service and UDP discovery service.

As an optional argument, the user can send a new device name.

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x00 General subcommand ID

MDNS service 1 X 0x00 – disabled, 0x01 – enabled

UDP discovery service 1 X 0x00 – disabled, 0x01 – enabled

Device name length 1 X Length of the device name

Device name X X Device name as ASCII bytes

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x00 General subcommand ID

Example – setup general settings procedure:

HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x00 – general subcommand
 0x01 – MDNS service enabled
 0x01 – UDP service enabled
 0x10 – device name length
 0x50 0x65 0x70 0x70 0x65 0x72 0x5f 0x43
 0x31 0x2d 0x31 0x41 0x36 0x34 0x44 0x34 – device name bytes

C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x00 – general subcommand ID

Example query:

HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x00 – query for general config

C1=>HOST: 0x00 – ACK byte
 0x13 - PROTOCOL_CONFIG
 0x00 – general settings subcommand
 0x00 – MDNS disabled
 0x01 – UDP discovery enabled
 0x10 – device name length
 0x50 0x65 0x70 0x70 0x65 0x72 0x5f 0x43
 0x31 0x2d 0x31 0x41 0x36 0x34 0x44 0x34 – device name bytes

10.1.21.2 UART settings

With this command the host can setup UART parameters.

57

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x01 UART subcommand

UART0 protocol 1 X
0x00 – Binary protocol
0x01 – Console logs

UART0 baud 1 X

0x00 – 9600 bps
0x01 – 19200 bps
0x02 – 38400 bps
0x03 – 57600 bps
0x04 – 115200 bps
0x05 – 230400 bps
0x06 – 460800 bps
0x07 – 921600 bps

UART2 protocol 1 X

0x00 – Binary protocol
0x01 – Console logs
0x02 – Modbus
0x03 – RS485 binary protocol
0x04 – Passthru mode
0x05 – Disabled

UART2 baud 1 X

0x00 – 9600 bps
0x01 – 19200 bps
0x02 – 38400 bps
0x03 – 57600 bps
0x04 – 115200 bps
0x05 – 230400 bps
0x06 – 460800 bps
0x07 – 921600 bps

Option bytes X X Option bytes described below

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x01

Option bytes description

Protocol Size Value Description

Modbus/ RS485 binary 1 X Device address on RS485

Passthru

1
X
1
X

X
X bytes

X
X bytes

Passthru Wi-Fi connected frame length
Passthru Wi-Fi connected frame bytes
Passthru Wi-Fi disconnected frame length
Passthru Wi-Fi disconnected frame bytes

Example:

HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x01 – UART subcommand

58

 0x01 – Console logs on UART0
 0x04 – 115200 baud
 0x04 – Uart passthru mode on UART2
 0x04 - 115200 baud
 0x00 – UART passthru Wifi connected frame length, no data bytes
 0x03 – UART passthru Wifi disconnected frame length
 0x50 0x65 0x70 – data bytes

C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x01 – UART subcommand ID

10.1.21.3 TCP server settings
This command should be used to setup TCP server parameters.

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x02 TCP server subcommand ID

Service enabled 1 X 0x00 – disabled, 0x01 – enabled

TCP server port 2 X Port two bytes LSB first

TCP server timeout 2 X Timeout in seconds, LSB first

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x02 TCP server subcommand ID

Example:

HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x02 – TCP subcommand ID
 0x01 – service enabled
 0xD2 0x04 – TCP port 1234
 0x00 0x00 - timeout

C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x02 – general subcommand ID

10.1.21.4 TCP client settings

This command should be used to setup TCP client parameters.

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x03 TCP client subcommand ID

Service enabled 1 X 0x00 – disabled, 0x01 – enabled

TCP port 2 X Port two bytes LSB first

TCP client timeout 2 X Timeout in seconds, LSB first

59

TCP server address X X server address as ASCII bytes

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x03 TCP client subcommand ID

Example:

HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x03 – TCP server subcommand ID
 0x01 – service enabled
 0xD2 0x04 – TCP port 1234
 0x00 0x00 – timeout
 0x65 0x78 0x61 0x6d 0x70 0x6c 0x65
 0x2e 0x63 0x6f 0x6d – server address bytes example.com

C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x03 – TCP server subcommand ID

10.1.21.5 WPAN settings

This command should be used to setup WPAN interface parameters

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x04 WPAN subcommand ID

Selected service 1 X

0x00 – disabled
0x01 – WPAN SPP
0x02 – WPAN Low Energy service
0x03 – WPAN HID service

Optional parameters X
- SPP service
- HID service

- 4 bytes WPAN PIN
- Send ENTER after UID 0x00 – disabled, 01-enabled

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x03 WPAN subcommand ID

Example:

HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x04 – WPAN subcommand ID
 0x01 – SPP service enabled
 0x31 0x32 0x33 0x34 – SPP pin ‘1234’
C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x04 – WPAN subcommand ID

60

10.1.21.6 MQTT client settings

This command should be used to setup MQTT parameters.

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x05 MQTT subcommand ID

Service enabled 1 X 0x00 – disabled, 0x01 – enabled

Port 2 X MQTT server port, LSB first

Server length 1 X Server name length

Server name X X Server name as ASCII bytes

User name length 1 X User name length

User name X X User name ASCII bytes

Password length 1 X Password name length

Password X X Password ASCII bytes

Out topic length 1 X Out topic name length

Out topic X X Out topic ASCII bytes

In topic length 1 X In topic name length

In topic X X In topic ASCII bytes

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x05 MQTT subcommand ID

Example:
HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x05 – MQTT subcommand ID
 0x01 – MQTT service enabled
 0x5B 0x07 – port 1883
 0x0B 0x65 0x78 0x61 0x6D 0x70
 0x6C 0x65 0x2E 0x63 0x6F 0x6D -server length + server bytes
 0x04 0x75 0x73 0x65 0x72 - user name length + username bytes
 0x08 0x70 0x61 0x73 0x73 0x77 0x6F 0x72 0x64
 – password length byte + password bytes
 0x08 0x72 0x66 0x69 0x64 0x5F 0x6F 0x75 0x74
 – out topic length byte + out topic bytes
 0x07 0x72 0x66 0x69 0x64 0x5F 0x69 0x6E
 – in topic length byte + in topic bytes

C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x05 – MQTT subcommand ID

61

10.1.21.7 REST API settings

This command should be used to set up the REST API parameters. REST API can work over HTTP and HTTPS but the

secure version needs a lot of memory and therefore may not work with WPAN services enabled at the same time. It is

also recommended to set up “Ignore the last TAG” in the RFID polling configuration to a value higher than 1000ms.

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x06 REST API subcommand ID

Service enabled 1 X 0x00 – disabled, 0x01 – enabled

Authorization type 1 X
0x00 – disabled
0x01 – Basic
0x02 - Digest

URL length 1 X URL name length

URL name X X URL name as ASCII bytes

User name length 1 X User name length

User name X X User name ASCII bytes

Password length 1 X Password name length

Password X X Password ASCII bytes

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x06 REST API subcommand ID

Example:
HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x06 – REST API subcommand ID
 0x01 – service enabled
 0x01 – Authorization type set to Basic
 0x0B 0x65 0x78 0x61 0x6D 0x70
 0x6C 0x65 0x2E 0x63 0x6F 0x6D - URL length + URL bytes
 0x04 0x75 0x73 0x65 0x72 - user name length + username bytes
 0x08 0x70 0x61 0x73 0x73 0x77 0x6F 0x72 0x64
 – password length byte + password bytes

C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x05 – REST API subcommand ID

10.1.21.8 Web socket settings

This command should be used to setup Web server settings.

Command description

Argument Size Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x07 Web socket subcommand ID

62

Service enabled 1 X 0x00 – disabled, 0x01 – enabled

URL length 1 X URL name length

URL name X X URL name as ASCII bytes

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x07 Web socket subcommand ID

Example:
HOST=>C1: 0x13 – PROTOCOL_CONFIG
 0x07 – Web service subcommand ID
 0x01 – service enabled
 0x0B 0x65 0x78 0x61 0x6D 0x70
 0x6C 0x65 0x2E 0x63 0x6F 0x6D - URL length + URL bytes
C1=>HOST: 0x00 – ACK byte
 0x13 – related command code PROTOCOL_CONFIG
 0x05 – Web service subcommand ID

10.1.22 LED command (0x14)

This command should be used to control the built-in LED. The first three bytes are the RGB value of the colour and the

optional two bytes are the timeout in milliseconds.

Command description

Argument Size Value Description

Command ID 1 0x14 LED command

GPIO number 3 RRGGBB RGB colour value

Timeout 2 X Number of milliseconds defined as unsigned 16bit value LSB order.

Response description

ACK 1 0x00

Command ID 1 0x14 LED command

Example:

HOST=>C1: 0x14 – LED command
 0xFF 0x00 0x00 – set red colour
 0x64 0x00 – timeout 100ms

C1=>HOST: 0x00 – ACK byte
 0x14 – related command code LED

10.1.23 WPAN data command(0x15)

This command should be used to send/receive frames from WPAN or WPAN SPP interface. Please read more about

bridge in section 9.4.

Command description

Argument Size Value Description

Command ID 1 0x15 WPAN data

Data x X Bytes forwarded to the WPAN LE /WPAN SPP interface

63

Response description

ACK 1 0x00

Command ID 1 0x15 WPAN data

Example:

HOST=>C1: 0x15 – WPAN data
 0x64 0x00 – timeout 100ms

C1=>HOST: 0x00 – ACK byte
 0x15 – related command code WPAN data

10.1.24 Polling setup (0x16)

This set of frames can be used to setup most of parameters for RFID polling. The first byte is the subtype of the frame.

To get current settings, the host has to send this frame with a subcommand ID only.

10.1.24.1 Supported technologies (0x00)

With this command the host can setup general settings for the device like MDNS service and UDP discovery service.

As an optional argument, the user can send a new device name.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x00 Supported technologies subcommand ID

Technologies 1 X 0x01 – Mifare, 0x10 – ICODE, 0x11 – Mifare + ICODE

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x00 Supported technologies subcommand ID

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x00 – Supported technologies subcommand ID
 0x11 – Enable both Mifare and ICODE

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x00 – Supported technologies subcommand ID

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x00 – query supported technologies subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x16 - POLLING_SETUP
 0x00 – Supported technologies subcommand ID

64

 0x01 – Mifare technology enabled

10.1.24.2 RFID power (0x01)

With this command the host can setup output power for RFID antenna. By default the power is set to value 0 and that

means it is automatic power control by the device. If user want to use fixed power then it can be selected from level

1 to level 7 where 7 is maximum power output. New power is automatically saved in the device memory but device

needs a restart to apply new changes.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x01 RFID power subcommand ID

Power 1 X
0x0 – Automatic power control
0x01 – 0x07 – fixed power level

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x01 RFID power subcommand ID

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x01 – RFID power subcommand ID
 0x01 – Set minimum power

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x01 – RFID power subcommand ID

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x01 – Query for RFID power

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x01 – RFID power subcommand ID
 0x01 – RFID power set to level 1

10.1.24.3 Internal polling control (0x02)

With this command the host can enable/disable internal polling. Comparing to command set polling this one is

permanent and it is saved in the device memory and restored after restart.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x02 Polling enabled subcommand ID

65

Enable flag 1 X
0x00 – Disabled
0x01 – Enabled

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x02 Polling enabled subcommand ID

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x02 – Polling enabled subcommand ID
 0x01 – Set polling enabled

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x02 – RFID power subcommand ID

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x02 – Query polling enabled flag

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x02 – Polling enabled subcommand ID
 0x01 – enabled flag

10.1.24.4 Polling timeout (0x03)

With this command the host can set the timeout between polling reads.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x03 Polling timeout subcommand

Timeout 2 X Timeout value in milliseconds as unsigned 16bit value

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x03 Polling timeout subcommand

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x03 – Polling timeout subcommand ID
 0xff 0x00 – Timeout set as 255ms

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x03 – Polling timeout subcommand ID

66

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x03 – Polling timeout subcommand

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x03 – Polling timeout subcommand
 0xff 0x00 – timeout value

10.1.24.5 Ignore timeout (0x04)

With this command, the host can set the ignore timeout for the last detected tag. This timer starts counting when the

tag is removed from the antenna field.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x04 Ignore timeout subcommand

Timeout 2 X Timeout value in milliseconds as unsigned 16bit value

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x04 Ignore timeout subcommand

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x04 – Ignore timeout subcommand ID
 0xff 0x00 – Timeout set as 255ms

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x04 – Ignore timeout subcommand ID

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x04 – Ignore timeout subcommand

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x04 – Ignore timeout subcommand
 0xff 0x00 – timeout value

10.1.24.6 Polling antennas (0x05) - MUX only
This command should be used to set active antennas on Pepper C1 MUX version used in polling mode. For MUX device

up to 8 antennas can be selected. As the parameter user need to pass the antenna mask. Each bit of this 1-byte

parameter represents the antenna number.

67

Bit number 7 6 5 4 3 2 1 0

Antenna number 8 7 6 5 4 3 2 1

“1” means active, “0” inactive.
So, if all active antennas 11111111b = 0xFF.
For ANT 1 and ANT3 -> 0000 0101b = 0x05
For ANT 1, ANT 2, ANT 3, ANT 4 -> 0000 1111b = 0x0F

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x05 Polling antenna subcommand

Selected antennas 1 X Active antenna mask

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x05 Polling antenna subcommand

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x05 – Polling antennas subcommand ID
 0xff – All antennas are active
C1=>HOST: 0x00 – ACK byte
 0x16 – Related command code POLLING_SETUP
 0x05 – Polling antennas subcommand ID

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x05 – Polling antennas subcommand ID
C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0xff – All antennas selected

10.1.24.7 Polling event packet (0x06)

With this command, the host can set up an asynchronous packet sent to the host for every UID event. An extra

argument describes type of the UID know (saved on the known tag list) or unknown.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x06 Polling event packet subcommand

Known/Unknow flag 1 X
0 – Known flag
1 – Unknown flag

Type of the packet 1 X 0 – None

68

1 – Binary frame
2 – Plain text
3 – JSON packet
4 – Custom text format frame

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x06 Polling event packet subcommand

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x06 – Polling event packet subcommand
 0x01 – Unknown flag
 0x01 – Binary frame format

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x06 – Polling event packet subcommand

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x06 – Polling event packet subcommand

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x06 – Polling event packet subcommand
 0x01 – binary frame sent when known tag is detected
 0x02 – plain text frame sent when unknown tag is detected

10.1.24.8 Polling LED event (0x07)

With this command, the host can set up an LED colour for every UID event. An extra argument describes type of the

UID know (saved on the known tag list) or unknown.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x07 Polling LED event subcommand

Known/Unknow flag 1 X
0 – Known flag
1 – Unknown flag

LED colour 1 X

0 – None
1 – Red
2 – Green
3 – Blue
4 – White

69

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x07 Polling LED event subcommand

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x07 – Polling LED event subcommand
 0x01 – Unknown flag
 0x01 – Red colour
C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x07 – Polling LED event subcommand

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x07 – Polling LED event subcommand
C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x07 – Polling LED event subcommand
 0x01 – Red led for known tag
 0x02 – Green led for unknown tag

10.1.24.9 Polling GPIO event (0x08)

With this command, the host can set up an GPIO event for every UID event. An extra argument describes type of the

UID know (saved on the known tag list) or unknown.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x08 Polling GPIO event subcommand

Known/Unknow flag 1 X
0 – Known flag
1 – Unknown flag

GPIO number 1 X GPIO number on the J1 header (in HEX format)
GPIO event type 1 X 0 – toggle low, 1 – toggle high

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x08 Polling GPIO event subcommand

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x08 – Polling GPIO event subcommand
 0x01 – Unknown flag
 0x20 – GPIO 32
 0x00 – Toggle low
C1=>HOST: 0x00 – ACK byte

70

 0x16 – related command code POLLING_SETUP
 0x08 – Polling GPIO event subcommand

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x08 – Polling GPIO event subcommand
C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x08 – Polling GPIO event subcommand
 0x02 – Toggle GPIO 2 for known tag
 0x00 – Toggle low
 0x05 – Toggle GPIO 5 for known tag
 0x01 – Toggle high

10.1.24.10 Event duration (0x09)

With this command, the host can set the time for known or unknown LED and GPIO event.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x09 Polling event duration

Known/Unknow flag 1 X
0 – Known flag
1 – Unknown flag

Timeout 2 X Timeout value in milliseconds as unsigned 16bit value

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x09 Polling event duration

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x09 – Polling event duration subcommand ID
 0xff 0x00 – Timeout set as 255ms

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x09 – Polling event duration subcommand ID

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x09 – Polling event duration subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x09 – Polling event duration subcommand ID
 0xff 0x00 – timeout value for known event
 0xff 0x00 – timeout value for unknown event

71

10.1.24.11 Polling event custom text format (0x0A)

With this command, the host can set custom frame text format for known and unknown events. The format has to be

transferred as ASCII bytes as part of the setup frame (see examples below). If the command is executed without

arguments then the device returns current setup for known and unknown frames separated with byte 0x00. More

information about custom frame format are described in the chapter 9.1.5

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x0A Custom frame format subcommand

Known/Unknow flag 1 X
0 – Known flag
1 – Unknown flag

Type of the packet 1 X Custom frame format as ASCII bytes

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x0A Custom frame format subcommand

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x0A – Custom frame format subcommand
 0x01 – Unknown flag
 0x55 0x49 0x44 0x3A 0x20 0x25 0x75 0x3C
 0x43 0x52 0x3E 0x3C 0x4C 0x46 0x3E – Custom frame format
 bytes ‘UID: %u<CR><LF>’

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x0A – Custom frame format subcommand

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x0A – Custom frame format subcommand

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x0A – Custom frame format subcommand

 0x4B 0x4E 0x4F 0x57 0x4E 0x3A 0x25 0x75
 0x3C 0x43 0x52 0x3E 0x3C 0x4C 0x46 0x3E
 0x00 0x55 0x4E 0x4B 0x4E 0x4F 0x57 0x4E
 0x3A 0x25 0x75 0x3C 0x43 0x52 0x3E 0x3C
 0x4C 0x46 0x3E – ASCII bytes for Known and unknow format separated
with byte 0x00. In this example converted to ASCII bytes we have
KNOWN:%u<CR><LF> for known tag event and UNKNOWN:%u<CR><LF> for
unknown format frame

72

10.1.24.12 Known tags on all antennas (0x0B)

With this command the host can enable/disable flag “Known tags on all antennas” for MUX devices. Please read

chapter 9.1.6 for more information about this flag.

Command description

Argument Size Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x0B Known tags on all antennas flag

Enable flag 1 X
0x00 – Disabled
0x01 – Enabled

Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x0B Known tags on all antennas flag

Example set command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x0B – Known tags on all antennas flag
 0x01 – Set flag to true

C1=>HOST: 0x00 – ACK byte
 0x16 – related command code POLLING_SETUP
 0x0B – Known tags on all antennas subcommand ID

Example get command:

HOST=>C1: 0x16 – POLLING_SETUP
 0x0B – Known tags on all antennas subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x16 – POLLING_SETUP
 0x0B – Known tags on all antennas subcommand ID
 0x01 – enabled flag

10.1.25 Sleep setup (0x17)

This set of commands can be used to setup most of parameters for sleep configuration. The first byte is the subtype of

the frame. To get current settings, the host has to send this frame with a subcommand ID only. This command is

available for firmware version 2.54 and above.

10.1.25.1 Use light sleep (0x00)

When this option is enabled the device is using light sleep mode to reduce boot time after wake up to about 50ms

instead of 400ms in deep sleep mode. This settings is recommended if host application wake up device often.

73

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x00 Light sleep subcommand ID

Light sleep mode 1 X 0x0 – disabled, 0x01 – enabled

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP _SETUP

Subcommand ID 1 0x00 Light sleep subcommand ID

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x00 – Light sleep subcommand ID
 0x01 – Enable light sleep mode

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code SLEEP_SETUP
 0x00 – Light sleep subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x00 – query supported technologies subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x00 – Light sleep subcommand ID
 0x01 – Light sleep mode enabled

10.1.25.2 Get tag command on boot (0x01)

For light sleep host can enable this option to execute GETTAG_COUNT command internally by device just after wake

up. When this option is enabled and device wake up from sleep mode ASYNC frame is sent to the host with number of

tags detected. It is also useful to get information from the device when it is ready to receive any other UART commands.

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x01 Execute GAT_TAG_COUNT on wake up subcommand ID

GET_TAG_COUNT flag 1 X 0x0 – disabled, 0x01 – enabled

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP _SETUP

Subcommand ID 1 0x01 Execute GAT_TAG_COUNT on wake up subcommand ID

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x01 – Execute GAT_TAG_COUNT on wake up subcommand ID
 0x01 – Enable wake up command on wake up

74

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code SLEEP _SETUP
 0x01 – Execute GAT_TAG_COUNT on wake up subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x01 – Execute GAT_TAG_COUNT on wake up subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x01 – Execute GAT_TAG_COUNT on wake up subcommand ID
 0x01 – GET_TAG_COUNT enabled on boot

10.1.25.3 No tag in range timeout (0x02)

User can specify the amount of second when device is active and then switch to sleep mode when no tags is in field.

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x02 No tag in rage timeout subcommand ID

Tiemout 2 X Timeout value in seconds as unsigned 16bit value

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x02 No tag in rage timeout subcommand ID

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x02 – No tag in rage timeout subcommand ID
 0xFF 0x00 – Timeout value

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code SLEEP _SETUP
 0x02 – No tag in rage timeout subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP _SETUP
 0x02 – No tag in rage timeout subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x02 – No tag in rage timeout subcommand ID
 0xFF 0x00 – Timeout value

75

10.1.25.4 Enter sleep mode when tag is detected (0x03)

When this option is selected the device enter in to sleep mode when the tag is detected. This feature is working only

when internal polling is enabled.

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x03 Enter sleep mode when tag detected subcommand ID

Enter sleep flag 1 X 0x0 – disabled, 0x01 – enabled

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x03 Enter sleep mode when tag detected subcommand ID

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x03 – Enter sleep mode when tag detected subcommand ID
 0x01 – Enable wake up command on wake up

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code SLEEP_SETUP
 0x03 – Enter sleep mode when tag detected subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP _SETUP
 0x03 – Enter sleep mode when tag detected subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x03 – Enter sleep mode when tag detected subcommand ID
 0x01 – GET_TAG_COUNT enabled on boot

10.1.25.5 Use LPCD in light sleep (0x04)

LPCD (Low Power Card Detection) is a built-in RFID chip functionality that allows the detection of tags when the reader

MCU is still in light sleep mode. This is an extremely useful feature if you want to save energy in sleep mode but still

detect the tag when it appears in the range of the antenna.

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x04 LPCD enable subcommand ID

Enter sleep flag 1 X 0x0 – disabled, 0x01 – enabled

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x04 LPCD enable subcommand ID

76

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x04 – LPCD enable subcommand ID
 0x01 – Enable LPCD

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code SLEEP_SETUP
 0x04 – LPCD enable subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP _SETUP
 0x04 – LPCD enable subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x04 – LPCD enable subcommand ID
 0x01 – LPCD enabled

10.1.25.6 LPCD polling timeout (0x05)

This timeout can be used to wake up device from sleep mode. Timeout should be specified in seconds.

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x05 LPCD timeout subcommand ID

Timer value 2 X Timeout value in seconds as unsigned 16bit value

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x05 LPCD timeout subcommand ID

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x05 – LPCD timeout subcommand ID
 0x00 0xFF – Timer value

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code SLEEP_SETUP
 0x05 – LPCD timeout subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP _SETUP
 0x05 – LPCD timeout subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x05 – LPCD timeout subcommand ID
 0x00 0xFF – timeout value

77

10.1.25.7 Wake up timer (0x06)

This timeout can be used to wake up device from sleep mode. Timeout should be specified in seconds.

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x06 Wake up timer subcommand ID

Timer value 2 X Timeout value in seconds as unsigned 16bit value

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x06 Wake up timer subcommand ID

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x06 – Wake up timer subcommand ID
 0x00 0xFF – Timer value

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code SLEEP_SETUP
 0x06 – Wake up timer subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP _SETUP
 0x06 – Wake up timer subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x06 – Wake up timer subcommand ID
 0x00 0xFF – timeout value

10.1.25.8 Wake up triggers (0x07)

This command should be used to specify the triggers used to wake up device. The host can specify two triggers and

this can be:

0x00 - Disabled
0x01 - UART2 RX pulse
0x02 - Button press
0x03 - GPIO2/4 set to low (GPIO4 for hardware v1, and GPIO4 for hardware v2)
0x04 - GPIO2/4 set to low (GPIO4 for hardware v1, and GPIO4 for hardware v2)

78

Command description

Argument Size Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x07 Wake up trigger subcommand ID

Trigger number 1 X Trigger number 0 or 1

Trigger type 1 X Trigger type as described above

Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x07 Wake up trigger subcommand ID

Example set command:

HOST=>C1: 0x17 – SLEEP_SETUP
 0x07 – Wake up trigger subcommand ID
 0x00 0x01 – Triger #1 set as UART2 pulse

C1=>HOST: 0x00 – ACK byte
 0x17 – related command code POLLING_SETUP
 0x07 – Wake up trigger subcommand ID

Example get command:

HOST=>C1: 0x17 – SLEEP _SETUP
 0x07 – Wake up trigger subcommand ID

C1=>HOST: 0x00 – ACK byte
 0x17 - SLEEP_SETUP
 0x07 – Wake up trigger subcommand ID
 0x01 – Trigger #1 set to UART2 byte
 0x00 – Trigger #2 disabled

10.1.26 LOG forwarding (0xE4)

This command should be used to enable log forwarding over binary protocol. When forwarding is enabled then all

console logs are forwarded to binary protocol interfaces (UART or TCP). This command does not require any ACK from

host and device side. Console data contains bytes used to set colour in terminal (bytes compatible with Posix console)

Command description

Argument Size Value Description

Command ID 1 0xE4 Log forwarding

Data 1 X
1 – Enable
0 – Disable

Response description

ACK 1 0x00

Command ID 1 0xE4 BT data

79

Example:

HOST=>C1: 0xE4 – LOG forwarding
 0x01 – Logs enabled

C1=>HOST: 0xE4 – LOG forwarding frame

E4 1B 5B 30 3B 33 32 6D 49 20 28 33 35 34 30 37 38 34 29 20 62 69 6E
61 72 79 5F 63 6D 64 3A 20 4C 6F 67 20 66 6F 72 77 61 72 64 69 6E 67
20 65 6E 61 62 6C 65 64 1B 5B 30 6D 0A – console data

80

10.2 MIFARE Classics commands

This set of commands should be performed on MIFARE Classics tags.

10.2.1 Read block (0x20)

The read block command should be used to read data from the tag. It takes as arguments the block number of the first

block to read, the number of blocks to read, the key A or B parameter, and the key number in key storage. The returned

ACK answer contains data read from the specified tag memory. The number of bytes of this data is MIFARE Classic

block size (16) multiplied by the number of blocks to be read.

Command description

Argument Size Value Description

Command ID 1 0x20 MF_READ_BLOCK

Block number 1 X

Number of blocks 1 Y

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

Response description

ACK 1 0x00

Command ID 1 0x20 MF_READ_BLOCK

Read data Y*16 XXX
Bytes read from the tag. Number of bytes is number of requested blocks
multiplied by 16.

Example:

HOST=>C1: 0x20 – MF_READ_BLOCK
 0x02 – block number 2
 0x02 – two blocks to read
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage

C1=>HOST: 0x00 – ACK byte
 0x20 – related command code MF_READ_BLOCK

 0x01 0x2e 0x41 0x22 0x43 0x11 0x8e 0x20
 0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
 0x81 0x23 0x42 0x28 0x33 0x01 0x8e 0x72
 0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 – 32 bytes result

10.2.2 Write block (0x21)

The write block command should be used to write data to the tag. It takes as arguments the block number of the first

block to write, the number of blocks to write, the key A or B parameter, the key number in key storage, and the bytes

to be written. The number of bytes to be written must be exactly the number of blocks to write multiplied by 16.

81

Command description

Argument Size Value Description

Command ID 1 0x21 MF_WRITE_BLOCK

Block number 1 X

Number of blocks 1 Y

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

Bytes to write Y*16 XXX
Bytes to write. Number of this bytes must be number of requested
blocks multiplied by 16.

Response description

ACK 1 0x00

Command ID 1 0x21 MF_WRITE_BLOCK

Example:

HOST=>C1: 0x21 – MF_WRITE_BLOCK
 0x02 – block number 2
 0x02 – two blocks to write
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage

 0x01 0x2e 0x41 0x22 0x43 0x11 0x8e 0x20
 0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
 0x81 0x23 0x42 0x28 0x33 0x01 0x8e 0x72
 0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 – 32 bytes to write

C1=>HOST: 0x00 – ACK byte
 0x21 – related command code MF_WRITE_BLOCK

10.2.3 Read value (0x22)

This command should be used to read a value from the tag. It takes as arguments the block number where the value

is stored, the key A or B parameter, and the key number in key storage. The returned ACK response contains a value

as a signed 32-bit value (LSB first) and an address byte as an unsigned 8bit value.

Command description

Argument Size Value Description

Command ID 1 0x22 MF_READ_VALUE

Block number 1 X

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

Response description

ACK 1 0x00

Command ID 1 0x22 MF_READ_VALUE

Value 4 X Signed 32-bit value (LSB first)

Address 1 X Address byte

82

Example:

HOST=>C1: 0x22 – MF_READ_VALUE
 0x02 – block number 2
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage

C1=>HOST: 0x00 – ACK byte
 0x22 – related command code MF_READ_BLOCK
 0x00 0x00 0x00 0x01 – value
 0x01 – address byte

10.2.4 Write value (0x23)

This command should be used to write a value to the tag. It takes as arguments the block number where the value

should be stored, the key A or B parameter, the key number in key storage, a value (signed 32-bit LSB first) as 4 bytes,

and an address byte (unsigned 8-bit value).

Command description

Argument Size Value Description

Command ID 1 0x23 MF_WRITE_VALUE

Block number 1 X

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

Value 4 X Signed 32-bit value (LSB first)

Address 1 X Address byte

Response description

ACK 1 0x00

Command ID 1 0x23 MF_WRITE_VALUE

Example:

HOST=>C1: 0x23 – MF_WRITE_VALUE
 0x02 – block number 2
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage
 0x00 0x00 0x00 0x01 – value
 0x01 – address byte

C1=>HOST: 0x00 – ACK byte
 0x23 – related command code MF_WRITE_BLOCK

10.2.5 Increment/decrement value (0x24)

This command should be used to increment or decrement a value stored in the tag memory. It takes as arguments the

block number where the value is stored, the key A or B parameter, the key number in key storage, value (signed 32-

bit LSB first) as 4 bytes to increment or decrement, and the increment/decrement flag.

83

Command description

Argument Size Value Description

Command ID 1 0x24 MF_INCREMENT_VALUE

Block number 1 X

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

Delta value 4 X Signed 32-bit value (LSB first)

Increment/Decrement 1 X
0x00 – Decrement by delta value
0x01 – Increment by delta value

Response description

ACK 1 0x00

Command ID 1 0x24 MF_INCREMENT_VALUE

Example:

HOST=>C1: 0x24 – MF_INCREMENT_VALUE
 0x02 – block number 2
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage
 0x00 0x00 0x00 0x01 – delta value
 0x01 – increment flag

C1=>HOST: 0x00 – ACK byte
 0x24 – related command code MF_INCREMENT_BLOCK

10.2.6 Transfer value (0x25)

This command should be used to transfer a value from a volatile register on the tag to the block being addressed. It

takes as arguments the block number where the value should be stored, the key A or B parameter, the key number in

key storage.

Command description

Argument Size Value Description

Command ID 1 0x25 MF_TRANSFER_VALUE

Block number 1 X

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

Response description

ACK 1 0x00

Command ID 1 0x25 MF_TRANSFER_VALUE

Example:

HOST=>C1: 0x25 – MF_TRANSFER_VALUE
 0x02 – block number 2
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage

84

C1=>HOST: 0x00 – ACK byte
 0x25 – related command code MF_TRANSFER_BLOCK

10.2.7 Restore value (0x26)

This command should be used to restore a value to a volatile register on the tag from the block being addressed. It

takes as arguments the block number where the value is stored, the key A or B parameter, key number in key storage.

Command description

Argument Size Value Description

Command ID 1 0x26 MF_RESTORE_VALUE

Block number 1 X

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

Response description

ACK 1 0x00

Command ID 1 0x26 MF_ RESTORE _VALUE

Example:

HOST=>C1: 0x26 – MF_RESTORE_VALUE
 0x02 – block number 2
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage

C1=>HOST: 0x00 – ACK byte
 0x26 – related command code MF_RESTORE_BLOCK

10.2.8 Transfer-Restore value (0x27)

This command performs a Restore-Transfer command sequence on the tag. It takes as arguments the block number

to be decremented, the block number to be transferred to, the key A or B parameter, the key number in key storage.

This command has the same functionality as the read value command, except that it can be used on a block which is

corrupted – it tries to recover data from a corrupted block. The format of a value-type block allows for some bits to be

corrupted and it still be possible to read and recover the proper value

Command description

Argument Size Value Description

Command ID 1 0x27 MF_TRANSFER_RESTORE_VALUE

Source block number 1 X Block number to be decremented

Destination block
number

1 X Block number to be transferred to

Key A/B parameter 1 X
0x0A – Key A should be selected from key storage
0x0B – Key B should be selected from key storage

Key number 1 0-4 Key number in key storage

85

Response description

ACK 1 0x00

Command ID 1 0x27 MF_ TRANSFER_RESTORE _VALUE

Example:

HOST=>C1: 0x27 – MF_TRANSFER_RESTORE_VALUE
 0x02 – source block number 2
 0x03 – destination block number 3
 0x0A – key A should be selected from key storage
 0x00 – first key should be selected from key storage

C1=>HOST: 0x00 – ACK byte
 0x27 – related command code MF_TRANSFER_RESTORE_BLOCK

10.3 MIFARE Ultralight commands

This set of commands should be performed on MIFARE Ultralight tags.

10.3.1 Read page (0x40)

The read page command should be used to read data stored in tag pages. It takes as arguments the page number of

the first page to be read, and the number of pages to be read. The returned ACK answer contains data read from the

specified tag memory. The number of bytes of this data is MIFARE Ultralight page size (4) multiplied by the number of

pages to be read.

Command description

Argument Size Value Description

Command ID 1 0x40 MFU_READ_PAGE

Page number 1 X

Number of pages 1 Y

Response description

ACK 1 0x00

Command ID 1 0x40 MFU_READ_PAGE

Read data Y*4 XXX
Bytes read from the tag. Number of bytes is number of requested pages
multiplied by 4.

Example:

HOST=>C1: 0x40 – MFU_READ_PAGE
 0x02 – page number 2
 0x02 – two pages to read

C1=>HOST: 0x00 – ACK byte
 0x40 – related command code MFU_READ_PAGE
 0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 – 8 bytes result

86

10.3.2 Write page (0x41)

The write page command should be used to write data to the tag. It takes as arguments the page number of the first

page to write, the number of pages to write, and the bytes to be written. The number of bytes to be written must be

exactly the number of pages to write multiplied by 4.

Command description

Argument Size Value Description

Command ID 1 0x41 MFU_WRITE_PAGE

Page number 1 X

Number of pages 1 Y

Bytes to write Y*4 XXX
Bytes to write. Number of this bytes must be number of requested pages
multiplied by 4.

Response description

ACK 1 0x00

Command ID 1 0x41 MFU_WRITE_PAGE

Example:

HOST=>C1: 0x41 – MFU_WRITE_PAGE
 0x02 – page number 2
 0x02 – two pages to write
 0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 – 32 bytes to write

C1=>HOST: 0x00 – ACK byte
 0x41 – related command code MFU_WRITE_PAGE

10.3.3 Get version (0x42)

This command requests a version string from the TAG. The returned ACK answer consists of 8-bytes containing the

version information defined by the NXP standard. Please refer to the NXP documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0x42 MFU_GET_VERSION

Response description

ACK 1 0x00

Command ID 1 0x42 MFU_GET_VERSION

Version bytes 8 X Version bytes from the TAG

Example:

HOST=>C1: 0x42 – MFU_GET_VERSION

C1=>HOST: 0x00 – ACK byte
 0x42 – related command code MFU_GET_VERSION
 0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 – version bytes

87

10.3.4 Read signature (0x43)

This command requests a version string from the device. The returned ACK answer contains 32-bytes with ECC

signature defined by the NXP standard. Please refer to the NXP documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0x43 MFU_READ_SIGNATURE

Response description

ACK 1 0x00

Command ID 1 0x43 MFU_READ_SIGNATURE

Version bytes 32 X Signature bytes from the TAG

Example:

HOST=>C1: 0x43 – MFU_READ_SIGNATURE

C1=>HOST: 0x00 – ACK byte
 0x43 – related command code MFU_READ_SIGNATURE
 0x01 0x2e 0x41 0x22 0x43 0x11 0x8e 0x20
 0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
 0x81 0x23 0x42 0x28 0x33 0x01 0x8e 0x72
 0x31 0x35 0x3a 0x33 0x35 0x3a 0x30 0x33 – signature bytes

10.3.5 Write signature (0x44)

This command writes the signature information to the MIFARE Ultralight Nano TAG. It takes as arguments relative page

location of the signature part to be written and four bytes of signature value to be written.

Command description

Argument Size Value Description

Command ID 1 0x44 MFU_WRITE_SIGNATURE

Relative page address 1 X Relative page location of the signature part to be written

Bytes to write 4 XXX
Bytes of signature value to be written to the specified relative page
address

Response description

ACK 1 0x00

Command ID 1 0x44 MFU_WRITE_ SIGNATURE

Example:

HOST=>C1: 0x44 – MFU_WRITE_SIGNATURE
 0x00 – relative page number 0
 0x35 0x3a 0x30 0x33 – 4 bytes to write

C1=>HOST: 0x00 – ACK byte
 0x44 – related command code MFU_WRITE_SIGNATURE

88

10.3.6 Lock signature (0x45)

This command locks the signature temporarily or permanently based on the information provided in the API. The

locking and unlocking of the signature can be performed using this command if the signature is not locked or temporary

locked. If the signature is permanently locked, then unlocking can’t be done.

Command description

Argument Size Value Description

Command ID 1 0x45 MFU_LOCK_SIGNATURE

Lock mode 1 X
0x00 – Unlock
0x01 – Lock
0x02 – Permanent lock

Response description

ACK 1 0x00

Command ID 1 0x45 MFU_LOCK_SIGNATURE

Example:

HOST=>C1: 0x45 – MFU_LOCK_SIGNATURE
 0x02 – permanent lock

C1=>HOST: 0x00 – ACK byte
 0x45 – related command code MFU_LOCK_SIGNATURE

10.3.7 Read counter (0x46)

This command should be used to read a counter from the TAG. It takes as arguments the counter number. The returned

ACK response contains a value as a signed 24-bit value (LSB first).

Command description

Argument Size Value Description

Command ID 1 0x46 MFU_READ_COUNTER

Counter number 1 0-2 Counter number

Response description

ACK 1 0x00

Command ID 1 0x46 MFU_READ_COUNTER

Counter value 3 X Unsigned 24-bit value, LSB first

Example:

HOST=>C1: 0x46 – MFU_READ_COUNTER
 0x01 – counter number

C1=>HOST: 0x00 – ACK byte
 0x46 – related command code MFU_READ_COUNTER
 0x00 0x00 0x01 – value

89

10.3.8 Increment counter (0x47)

This command should be used to increment a counter stored in the tag memory. It takes as arguments the counter

number and increment value (24-bit value LSB first) as 3 bytes.

Command description

Argument Size Value Description

Command ID 1 0x47 MFU_INCREMENT_COUNTER

Counter number 1 0-2 Counter number

Increment value 3 X Unsigned 24-bit value (LSB first)

Response description

ACK 1 0x00

Command ID 1 0x47 MFU_INCREMENT_COUNTER

Example:

HOST=>C1: 0x47 – MFU_INCREMENT_COUNTER
 0x02 – block number 2
 0x00 0x00 0x01 – increment value

C1=>HOST: 0x00 – ACK byte
 0x47 – related command code MFU_INCREMENT_COUNTER

10.3.9 Password auth (0x48)

This command tries to authenticate the tag using the chosen password. It takes as an argument a password as four

bytes. The returned ACK response contains two bytes of password acknowledge (PACK).

Command description

Argument Size Value Description

Command ID 1 0x48 MFU_PASSWORD_AUTH

Counter number 4 X 4-bytes password

Response description

ACK 1 0x00

Command ID 1 0x48 MFU_PASSWORD_AUTH

PACK 2 X Password acknowledge bytes

Example:

HOST=>C1: 0x48 – MFU_PASSWORD_AUTH
 0x00 0x00 0x00 0x00 – password

C1=>HOST: 0x00 – ACK byte
 0x48 – related command code MFU_PASSWORD_AUTH
 0x00 0x00 – password acknowledge bytes

90

10.3.10 Ultralight-C authenticate (0x49)

This command tries to authenticate the MIFARE Ultralight-C tag using the password stored in the key storage. It takes

as an argument one byte with the key number in the key storage.

Command description

Argument Size Value Description

Command ID 1 0x49 MFUC_AUTHENTICATE

Key number 1 0-4 Key number in key storage

Response description

ACK 1 0x00

Command ID 1 0x49 MFUC_AUTHENTICATE

Example:

HOST=>C1: 0x49 – MFUC_AUTHENTICATE
 0x00 – key number

C1=>HOST: 0x00 – ACK byte
 0x49 – related command code MFUC_AUTHENTICATE

10.3.11 Check Tearing Event (0x4A)

The Check Tearing Event command takes as arguments one byte with the counter number. This command checks

whether there was a tearing event in the counter. The returned ACK response contains result byte. The value ‘0x00’ is

returned if there has been no tearing event, and ‘0x01’ is returned if a tearing event occurred. Please refer to the NXP

documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0x49 MFU_CHECKEVENT

Counter number 1 0-2 Counter number

Response description

ACK 1 0x00

Command ID 1 0x49 MFU_CHECKEVENT

Example:

HOST=>C1: 0x49 – MFU_CHECKEVENT
 0x00 – counter number

C1=>HOST: 0x00 – ACK byte
 0x49 – related command code MFU_CHECKEVENT
 0x01 – tearing event occurred

91

10.4 MIFARE DESFire commands

This set of commands should be performed on MIFARE DESFire tags.

10.4.1 Get version (0x60)

This command requests version information from the tag. The returned ACK answer contains 28-bytes with version

information.

Command description

Argument Size Value Description

Command ID 1 0x60 MFDF_GET_VERSION

Response description

ACK 1 0x00

Command ID 1 0x60 MFDF_GET_VERSION

Read data 28 XXX Version bytes read from the tag

Example:

HOST=>C1: 0x60 – MFDF_GET_VERSION

C1=>HOST: 0x00 – ACK byte
 0x60 – related command code MFDF_GET_VERSION

 0x01 0x2e 0x41 0x22 0x43 0x11 0x8e 0x20
 0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
 0x81 0x23 0x42 0x28 0x33 0x01 0x8e 0x72
 0x31 0x35 0x3a 0x33 – 28 bytes result

10.4.2 Select application (0x61)

This command requests select application operation on the tag. Takes as argument 3-byes containing AID.

Command description

Argument Size Value Description

Command ID 1 0x61 MFDF_SELECT_APP

AID 3 X Application ID

Response description

ACK 1 0x00

Command ID 1 0x61 MFDF_SELECT_APP

Example:

HOST=>C1: 0x61 – MFDF_SELECT_APP
 0x01 0x02 0x03 – 3 bytes AID

C1=>HOST: 0x00 – ACK byte
 0x61 – related command code MFDF_SELECT_APP

92

10.4.3 List application IDs (0x62)

This command requests lists application IDs from the TAG. The returned ACK answer contains the bytes with

application IDs. Every ID is 3-bytes long.

Command description

Argument Size Value Description

Command ID 1 0x62 MFDF_LIST_APP_IDS

Response description

ACK 1 0x00

Command ID 1 0x62 MFDF_LIST_APP_IDS

Application IDs X*3 X Bytes with applications IDs

Example:

HOST=>C1: 0x62 – MFDF_LIST_APP_IDS

C1=>HOST: 0x00 – ACK byte
 0x62 – related command code MFDF_LIST_APP_IDS
 0x00 0x00 0x01 – first AID
 0xAA 0xBB 0xCC – second AID
 0x55 0x55 0x55 – third AID
 ...

10.4.4 List files IDs (0x63)

This command returns the file IDs of all active files within the currently selected application. The returned ACK answer

contains the bytes with file IDs. Every file ID is 3-bytes long.

Command description

Argument Size Value Description

Command ID 1 0x63 MFDF_LIST_FILE_IDS

Response description

ACK 1 0x00

Command ID 1 0x63 MFDF_LIST_FILE_IDS

Application IDs X*3 X Bytes with files IDs

Example:

HOST=>C1: 0x63 – MFDF_LIST_FILE_IDS

C1=>HOST: 0x00 – ACK byte
 0x63 – related command code MFDF_LIST_FILE_IDS
 0x00 0x00 0x01 – first file ID
 0xAA 0xBB 0xCC – second file ID
 0x55 0x55 0x55 – third file ID
 ...

93

10.4.5 Authenticate (0x64)

This command tries to authenticate the MIFARE DESFire using the password stored in the key storage. It takes as an

argument one byte with the key number in the key storage, and one byte with the key number on the card. This

command can be used with DES and 2K3DES keys.

Command description

Argument Size Value Description

Command ID 1 0x64 MFDF_AUTHENTICATE

Key number in storage 1 0-4 Key number in key storage

Key number on card 1 x Key number on card

Response description

ACK 1 0x00

Command ID 1 0x64 MFDF_AUTHENTICATE

Example:

HOST=>C1: 0x64 – MFDF_AUTHENTICATE
 0x01 – key number in key storage
 0x00 – key number on the card

C1=>HOST: 0x00 – ACK byte
 0x64 – related command code MFDF_AUTHENTICATE

10.4.6 Authenticate ISO (0x65)

This command tries to authenticate the MIFARE DESFire tag in ISO CBS send mode using the key stored in the key

storage. It takes as an argument one byte with the key number in the key storage, and one byte with the key number

on the card. This command can be used with DES, 3DES and 3K3DES keys.

Command description

Argument Size Value Description

Command ID 1 0x65 MFDF_AUTHENTICATE_ISO

Key number 1 0-4 Key number in key storage

Key number on card 1 x Key number on card

Response description

ACK 1 0x00

Command ID 1 0x65 MFDF_AUTHENTICATE_ISO

Example:

HOST=>C1: 0x65 – MFDF_AUTHENTICATE_ISO
 0x01 – key number in key storage
 0x00 – key number on the card

C1=>HOST: 0x00 – ACK byte
 0x65 – related command code MFDF_AUTHENTICATE_ISO

94

10.4.7 Authenticate AES (0x66)

This command tries to authenticate the MIFARE DESFire using the key stored in the key storage, and one byte with the

key number on the card. It takes as an argument one byte with the key number in the key storage. This command can

be used with AES128 keys.

Command description

Argument Size Value Description

Command ID 1 0x66 MFDF_AUTHENTICATE_ISO

Key number 1 0-4 Key number in key storage

Key number on card 1 x Key number on card

Response description

ACK 1 0x00

Command ID 1 0x66 MFDF_AUTHENTICATE_ISO

Example:

HOST=>C1: 0x66 – MFDF_AUTHENTICATE_AES
 0x01 – key number in key storage
 0x00 – key number on the card

C1=>HOST: 0x00 – ACK byte
 0x66 – related command code MFDF_AUTHENTICATE_AES

10.4.8 Create application (0x67)

This command tries to create application on the tag. It takes three arguments: 3-bytes of application ID, the

keySettings1 byte and the keySettings2 byte. Please refer to the NXP documentation for more information about key

settings bytes.

Command description

Argument Size Value Description

Command ID 1 0x67 MFDF_CREATE_APP

Application ID 3 X Application ID bytes

Key settings 1 1 X Please refer to the NXP documentation for more information

Key settings 2 1 X Please refer to the NXP documentation for more information

Response description

ACK 1 0x00

Command ID 1 0x67 MFDF_CREATE_APP

Example:

HOST=>C1: 0x67 – MFDF_CREATE_APP
 0x00 – key number
 0x01 0x02 0x03 – application ID
 0xED 0x84 – key settings bytes
C1=>HOST: 0x00 – ACK byte
 0x67 – related command code MFDF_CREATE_APP

95

10.4.9 Delete application (0x68)

This command tries to delete an application from the tag. It takes one argument with the application ID.

Command description

Argument Size Value Description

Command ID 1 0x68 MFDF_DELETE_APP

Application ID 3 X Application ID bytes

Response description

ACK 1 0x00

Command ID 1 0x68 MFDF_DELETE_APP

Example:

HOST=>C1: 0x68 – MFDF_DELETE_APP
 0x01 0x02 0x03 – application ID
C1=>HOST: 0x00 – ACK byte
 0x68 – related command code MFDF_DELETE_APP

10.4.10 Change key (0x69)

This command tries to change the key for the selected application. It takes three arguments: the old key number from

key storage, the new key number in the key storage and the key number on the card. The key type of the application

keys cannot be changed.

Command description

Argument Size Value Description

Command ID 1 0x69 MFDF_CHANGE_KEY

Old key number 1 0-4 Key number in key storage

New key number 1 0-4 Key number in key storage

Key number on card 1 X Key number on the card

Response description

ACK 1 0x00

Command ID 1 0x69 MFDF_CHANGE_KEY

Example:

HOST=>C1: 0x69 – MFDF_CHANGE_APP
 0x00 – old key number
 0x01 – new key number
 0x00 – key number

C1=>HOST: 0x00 – ACK byte
 0x69 – related command code MFDF_CHANGE_APP

10.4.11 Get key settings (0x6A)

This command gets the key settings bytes from the tag. This command does not require any arguments but an

application must be selected and authorized. The first bytes is access rights and key settings bits, the second byte is

number of keys and type of authorization.

96

Command description

Argument Size Value Description

Command ID 1 0x6A MFDF_GET_KEY_SETTINGS

Response description

ACK 1 0x00

Command ID 1 0x6A MFDF_GET_KEY_SETTINGS

Key settings 2 X Key settings bytes

Example:

HOST=>C1: 0x6A – MFDF_GET_KEY_SETTINGS

C1=>HOST: 0x00 – ACK byte
 0x6A – related command code MFDF_GET_KEY_SETTINGS
 0xEF 0x84 – key settings bytes

10.4.12 Change key settings (0x6B)

This command changes the key settings bytes for the selected and authorized application. It takes one argument, 1-

byes long with access rights and key settings bits.

Command description

Argument Size Value Description

Command ID 1 0x6B MFDF_CHANGE_KEY_SETTINGS

New key settings 1 X Key settings bytes

Response description

ACK 1 0x00

Command ID 1 0x6B MFDF_CHANGE_KEY_SETTINGS

Example:

HOST=>C1: 0x6B – MFDF_GET_KEY_SETTINGS
 0xEF – key settings bytes

C1=>HOST: 0x00 – ACK byte
 0x6B – related command code MFDF_GET_KEY_SETTINGS

10.4.13 Create standard or backup data file (0x6C)

This command creates a file for the storage of plain unformatted user data within the selected application. It takes

four arguments listed in the table below.

Command description

Argument Size Value Description

Command ID 1 0x6C MFDF_CREATE_DATA_FILE

File number 1 X File number inside application

Access rights 2 X Please refer to the NXP documentation for more information

File size 3 X file size, LSB first

Backup file 1 X
0x00 – Standard file
0x01 – Backup file

97

Comm mode 1 X

Communication mode:
0x00 – PLAIN
0x01 – MACD
0x02 - ENC

Response description

ACK 1 0x00

Command ID 1 0x6B MFDF_CREATE_DATA_FILE

Example:

HOST=>C1: 0x6C – MFDF_CREATE_DATA_FILE
 0x01 – file number
 0xEE 0xEE – access rights
 0x40 0x00 0x00 – file 64-bytes long
 0x01 – backup file
 0x00 – Plain mode

C1=>HOST: 0x00 – ACK byte
 0x6C – related command code MFDF_CREATE_DATA_FILE

10.4.14 Write data (0x6D)

This command writes data to standard data files or backup data files. It takes three arguments: the file number, the

offset in the file where data should be stored, and the data bytes to be written. To store data on the TAG, a commit

transaction command is required.

Command description

Argument Size Value Description

Command ID 1 0x6D MFDF_WRITE_DATA

File number 1 X File number inside application

File offset 3 X file offset, 3-bytes LSB value

Comm mode 1 X

Communication mode:
0x00 – PLAIN
0x01 – MACD
0x02 - ENC

Data N X Data bytes to write

Response description

ACK 1 0x00

Command ID 1 0x6D MFDF_WRITE_DATA

Example:

HOST=>C1: 0x6D – MFDF_WRITE_DATA
 0x01 – file number
 0x00 0x00 0x00 – zero offset
 0x00 – Plain mode
 0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data
C1=>HOST: 0x00 – ACK byte
 0x6D – related command code MFDF_WRITE_DATA

98

10.4.15 Read data (0x6E)

This command reads data from standard data files or backup data files. It takes three arguments: the file number, the

offset in the file where data is stored, and the number of bytes to be read. The returned ACK response contains the

data that has been read.

Command description

Argument Size Value Description

Command ID 1 0x6E MFDF_READ_DATA

File number 1 X File number inside application

File offset 3 X file offset, 3-bytes LSB value

Data length 3 X Read data length, 3-bytes LSB value

Comm mode 1 X

Communication mode:
0x00 – PLAIN
0x01 – MACD
0x02 - ENC

Response description

ACK 1 0x00

Command ID 1 0x6E MFDF_READ_DATA

Example:

HOST=>C1: 0x6E – MFDF_READ_DATA
 0x01 – file number
 0x00 0x00 0x00 – zero offset
 0x07 0x00 0x00 – seven bytes to read
 0x00 – Plain mode
C1=>HOST: 0x00 – ACK byte
 0x6E – related command code MFDF_READ_DATA
 0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data

10.4.16 Create value file (0x6F)

This command creates files for the storage and manipulation of 32bit signed integer values within an existing

application on the TAG. It takes seven arguments listed in the table below.

Command description

Argument Size Value Description

Command ID 1 0x6F MFDF_CREATE_VALUE_FILE

File number 1 X File number inside application

Access rights 2 X Please refer to the NXP documentation for more information

Low limit 4 X Low limit as 4-bytes signed value, LSB first

Up limit 4 X Up limit as 4-bytes signed value, LSB first

Initial value 4 X Initial value as 4-bytes signed value, LSB first

Get free enabled 1 X Please refer to the NXP documentation for more information

Limit credited 1 X Please refer to the NXP documentation for more information

Response description

99

ACK 1 0x00

Command ID 1 0x6F MFDF_CREATE_VALUE_FILE

Example:

HOST=>C1: 0x6F – MFDF_CREATE_VALUE_FILE
 0x02 – file number
 0xEE 0xEE – access rights
 0x00 0x00 0x00 0x00 – low limit
 0x80 0x00 0x00 0x00 – up limit
 0x00 0x00 0x00 0x00 – initial value
 0x01 – get free enabled
 0x01 – limited credit

C1=>HOST: 0x00 – ACK byte
 0x6F – related command code MFDF_CREATE_VALUE_FILE

10.4.17 Get value (0x70)

This command returns the value stored in a value file on the TAG. The returned ACK response contains 4 bytes of

signed value, LSB-first.

Command description

Argument Size Value Description

Command ID 1 0x70 MFDF_GET_VALUE

File number 1 X File number inside application

Response description

ACK 1 0x00

Command ID 1 0x70 MFDF_GET_VALUE

Value 4 X 4 bytes signed value, LSB first

Example:

HOST=>C1: 0x70 – MFDF_GET_VALUE
 0x02 – file number

C1=>HOST: 0x00 – ACK byte
 0x70 – related command code MFDF_GET_VALUE
 0x05 0x00 0x00 0x00 – 4 bytes signed value, LSB first

10.4.18 Credit file (0x71)

This command increases a value stored in a value file on the TAG.

Command description

Argument Size Value Description

Command ID 1 0x71 MFDF_CREDIT

File number 1 X File number inside application

Credit value 4 X 4 bytes signed value, LSB first

Response description

100

ACK 1 0x00

Command ID 1 0x71 MFDF_CREDIT

Example:

HOST=>C1: 0x71 – MFDF_CREDIT
 0x02 – file number
 0x05 0x00 0x00 0x00 – 4 bytes signed value, LSB first

C1=>HOST: 0x00 – ACK byte
 0x71 – related command code MFDF_CREDIT

10.4.19 Limited credit file (0x72)

This command allows a limited increase of a value stored in a value file without having full credit permissions to the

file. Please refer to the NXP documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0x72 MFDF_LIMITED_CREDIT

File number 1 X File number inside application

Credit value 4 X 4 bytes signed value, LSB first

Response description

ACK 1 0x00

Command ID 1 0x72 MFDF_ LIMITED_CREDIT

Example:

HOST=>C1: 0x72 – MFDF_ LIMITED_CREDIT
 0x02 – file number
 0x05 0x00 0x00 0x00 – 4 bytes signed value, LSB first

C1=>HOST: 0x00 – ACK byte
 0x72 – related command code MFDF_ LIMITED_CREDIT

10.4.20 Debit file (0x73)

This command decreases a value stored in a value file on the TAG.

Command description

Argument Size Value Description

Command ID 1 0x73 MFDF_DEBIT

File number 1 X File number inside application

Credit value 4 X 4 bytes signed value, LSB first

Response description

ACK 1 0x00

Command ID 1 0x73 MFDF_DEBIT

101

Example:

HOST=>C1: 0x73 – MFDF_DEBIT
 0x02 – file number
 0x05 0x00 0x00 0x00 – 4 bytes signed value, LSB first

C1=>HOST: 0x00 – ACK byte
 0x73 – related command code MFDF_DEBIT

10.4.21 Create record file (0x74)

This command creates files for multiple storage of structurally similar data within an existing application. If the cyclic

flag is 0x00, then further writing is not possible unless it is cleared. If the cyclic flag is set to 0x01, then the new record

overwrites the oldest record.

Command description

Argument Size Value Description

Command ID 1 0x74 MFDF_CREATE_RECORD_FILE

File number 1 X File number inside application

Access rights 2 X Please refer to the NXP documentation for more information

Record size 2 X Record size, 16-bits LSB value

Number of records 2 X Number of records, 16-bits LSB value

Cyclic flag 1
X If cyclic file is full:

0x00 - further writing is not possible unless it is cleared
0x01 - the new record overwrites oldest record

Response description

ACK 1 0x00

Command ID 1 0x74 MFDF_CREATE_RECORD_FILE

Example:

HOST=>C1: 0x74 – MFDF_CREATE_RECORD_FILE
 0x03 – file number
 0xEE 0xEE – access rights
 0x08 0x00 – 8-bytes for every record
 0x40 0x00 – 64 records
 0x01 – cyclic flag

C1=>HOST: 0x00 – ACK byte
 0x74 – related command code MFDF_CREATE_VALUE_FILE

10.4.22 Write record (0x75)

This command writes data to a record file. It takes two arguments: the file number and the data bytes to be written.

To store data on the TAG, a commit transaction command is required.

102

Command description

Argument Size Value Description

Command ID 1 0x75 MFDF_WRITE_RECORD_DATA

File number 1 X File number inside application

Data N X Data bytes to write

Response description

ACK 1 0x00

Command ID 1 0x75 MFDF_WRITE_DATA

Example:

HOST=>C1: 0x75 – MFDF_WRITE_DATA
 0x01 – file number
 0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data
C1=>HOST: 0x00 – ACK byte
 0x75 – related command code MFDF_WRITE_RECORD_DATA

10.4.23 Read record (0x76)

This command reads data from a record file. It takes three arguments: the file number, the record number, and the

number of bytes to be read. The returned ACK response contains the data that has been read.

Command description

Argument Size Value Description

Command ID 1 0x76 MFDF_READ_RECORD

File number 1 X File number inside application

Record number 2 X Record number, 2-bytes LSB value

Data length 2 X Read data length, 2-bytes LSB value

Response description

ACK 1 0x00

Command ID 1 0x76 MFDF_READ_RECORD

Example:

HOST=>C1: 0x76 – MFDF_READ_RECORD
 0x01 – file number
 0x00 0x01 – record number
 0x08 0x00 – eighth bytes to read
C1=>HOST: 0x00 – ACK byte
 0x76 – related command code MFDF_READ_RECORD
 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data

10.4.24 Clear records (0x77)

This command resets cyclic or lineal record files. It takes as an argument the file number.

103

Command description

Argument Size Value Description

Command ID 1 0x77 MFDF_CLEAR_RECORDS

File number 1 X File number inside application

Response description

ACK 1 0x00

Command ID 1 0x77 MFDF_CLEAR_RECORDS

Example:

HOST=>C1: 0x77 – MFDF_CLEAR_RECORDS
 0x01 – file number

C1=>HOST: 0x00 – ACK byte
 0x77 – related command code MFDF_CLEAR_RECORDS

10.4.25 Delete file (0x78)

This command permanently deactivates a file within the file directory of the currently selected application. It takes as

an argument the file number.

Command description

Argument Size Value Description

Command ID 1 0x78 MFDF_DELETE_FILE

File number 1 X File number inside application

Response description

ACK 1 0x00

Command ID 1 0x78 MFDF_DELETE_FILE

Example:

HOST=>C1: 0x78 – MFDF_DELETE_FILE
 0x01 – file number

C1=>HOST: 0x00 – ACK byte
 0x78 – related command code MFDF_DELETE_FILE

10.4.26 Get free memory (0x79)

This command returns a value corresponding to the amount of free memory available on the TAG. No arguments are

required. The available memory is returned as a 4 byte unsigned LSB value.

Command description

Argument Size Value Description

Command ID 1 0x79 MFDF_GET_FREE_MEM

Response description

ACK 1 0x00

Command ID 1 0x79 MFDF_GET_FREE_MEM

Free memory 4 X Free memory, 4-bytes, LSB first

104

Example:

HOST=>C1: 0x79 – MFDF_GET_FREE_MEM

C1=>HOST: 0x00 – ACK byte
 0x79 – related command code MFDF_GET_FREE_MEM
 0x00 0x08 0x00 0x00 – free memory

10.4.27 Format memory (0x7A)

This command releases user memory in the TAG. No arguments are required.

Command description

Argument Size Value Description

Command ID 1 0x7A MFDF_FORMAT

Response description

ACK 1 0x00

Command ID 1 0x7A MFDF_FORMAT

Example:

HOST=>C1: 0x7A – MFDF_FORMAT

C1=>HOST: 0x00 – ACK byte
 0x7A – related command code MFDF_FORMAT

10.4.28 Commit transaction (0x7B)

This command validates all previous write access on backup data files, value files and record files within one

application. No arguments are required.

Command description

Argument Size Value Description

Command ID 1 0x7B MFDF_COMMIT_TRANSACTION

Response description

ACK 1 0x00

Command ID 1 0x7B MFDF_COMMIT_TRANSACTION

Example:

HOST=>C1: 0x7B – MFDF_COMMIT_TRANSACTION

C1=>HOST: 0x00 – ACK byte
 0x7B – related command code MFDF_COMMIT_TRANSACTION

105

10.4.29 Abort transaction (0x7C)

This command invalidates all previous write access on backup data files, value files and record files within one

application. No arguments are required.

Command description

Argument Size Value Description

Command ID 1 0x7C MFDF_ABORT_TRANSACTION

Response description

ACK 1 0x00

Command ID 1 0x7C MFDF_ABORT_TRANSACTION

Example:

HOST=>C1: 0x7C – MFDF_ABORT_TRANSACTION

C1=>HOST: 0x00 – ACK byte
 0x7C – related command code MFDF_ABORT_TRANSACTION

10.4.30 Get file settings file (0x7D)

This command gets settings for the selected file. The format of the settings bytes depends on the file type.

Command description

Argument Size Value Description

Command ID 1 0x7D MFDF_GET_FILE_SETTINGS

File number 1 X File number inside application

Response description

ACK 1 0x00

Command ID 1 0x7D MFDF_GET_FILE_SETTINGS

File type 1 X

0x00 – data file
0x01 – backup file
0x02 – credit file
0x03 – record file
0x04 – cyclic file

Access rights 2 X Please refer to the NXP documentation for more information

Settings bytes
data file

value file

record or cyclic files

3

 3 bytes – file size, LSB first

10

4 bytes – lower limit, LSB first
4 bytes – upper limit, LSB first
1 byte – get free enabled
1 byte – limited credit enabled

9
3 bytes – record size
3 bytes – max number of records
3 bytes – current number of records

106

Example:

HOST=>C1: 0x7D – MFDF_GET_FILE_SETTINGS
 0x01 – file number

C1=>HOST: 0x00 – ACK byte
 0x7D – related command code MFDF_GET_FILE_SETTINGS
 0x00 – data file type
 0xEE 0xEE – access rights
 0x20 0x00 0x00 – file size 32 bytes, LSB first

10.4.31 Set file settings (0x7E)

This command sets new access rights for the selected file.

Command description

Argument Size Value Description

Command ID 1 0x7E MFDF_SET_FILE_SETTINGS

File number 1 X File number inside application

New access rights 2 X Please refer to the NXP documentation for more information

Response description

ACK 1 0x00

Command ID 1 0x7E MFDF_WRITE_DATA

Example:

HOST=>C1: 0x7E – MFDF_SET_FILE_SETTINGS
 0x01 – file number
 0xEE 0xEE- new access rights bytes
C1=>HOST: 0x00 – ACK byte
 0x7E – related command code MFDF_SET_FILE_SETTINGS

107

10.5 ICODE (ISO15693) commands

This set of commands should be performed on ICODE (ISO15693) TAGs.

10.5.1 Inventory start (0x90)

This command starts the inventory procedure on ISO 15693 TAGs. It activates the first TAG detected during collision

resolution. If no TAGs are detected, then an error with a timeout flag is returned. This command takes one argument

AFI - Application Family Identifier. Please refer to the NXP documentation for more information.

If any TAG(s) is/are detected, then the command returns an ACK message containing the UID (8-bytes), a DSFID byte,

and 1-byte which contains information about any other tags detected in the field that are available to be read.

Because GET_TAG_COUNT command is limited to 5 tags only, ICODE_INVENTORY_START/ICODE_INVENTORY_NEXT

commands should be used to detect all ICODE tags within range of the antenna.

Command description

Argument Size Value Description

Command ID 1 0x90 ICODE_INVENTORY_START

AFI 1 X Application Family Identifier

Response description

ACK 1 0x00

Command ID 1 0x90 ICODE_INVENTORY_START

UID 8 XXX Unique identifier, inverted order

DSFID 1 X Data Storage Format Identifier

More cards flag 1 X
0x00 – no more cards in range of antenna
0x01 – more cards in range of antenna

Example:

HOST=>C1: 0x90 – ICODE_INVENTORY_START
 0x00 – Application Family Identifier

C1=>HOST: 0x00 – ACK byte
 0x90 – related command code ICODE_INVENTORY_START
 0x04 0x8F 0x7F 0x0A 0x01 0x24 0x16 0xE0 – UID
 0x00 – DSFID
 0x01 – more cards in range of antenna

10.5.2 Inventory next (0x91)

This command should be used to continue the inventory procedure on ISO 15693 TAGs. It activates the next TAG that

was detected during the collision resolution. It takes one argument, AFI - Application Family Identifier. Please refer to

the NXP documentation for more information. If a TAG or multiple tags is/are detected, then this command returns

an ACK message containing the UID (8-bytes), a DSFID byte, and 1-byte which contains information about any other

tags detected in the field that are available to be read.

108

Command description

Argument Size Value Description

Command ID 1 0x91 ICODE_INVENTORY_NEXT

AFI 1 X Application Family Identifier

Response description

ACK 1 0x00

Command ID 1 0x91 ICODE_INVENTORY_NEXT

UID 8 XXX Unique identifier

DSFID 1 X Data Storage Format Identifier

More cards flag 1 X
0x00 – no more cards in range of antenna
0x01 – more cards in range of antenna

Example:

HOST=>C1: 0x91 – ICODE_INVENTORY_NEXT
 0x00 – Application Family Identifier

C1=>HOST: 0x00 – ACK byte
 0x91 – related command code ICODE_INVENTORY_NEXT
 0x04 0x8F 0x7F 0x0A 0x01 0x24 0x16 0xE0 – UID
 0x00 – DSFID
 0x00 – no more cards available for reading

10.5.3 Stay quiet (0x92)

This command performs an ISO15693 Stay Quiet command to the selected TAG. When the tag receives the Stay quiet

command, it enters the quiet state and will not send back a response. The TAG exits the quiet state upon the execution

of a reset (power off) or the command ICODE_INVENTORY_START. Please refer to the NXP documentation for more

information.

Command description

Argument Size Value Description

Command ID 1 0x92 ICODE_STAY_QUIET

Response description

ACK 1 0x00

Command ID 1 0x92 ICODE_STAY_QUIET

Example:

HOST=>C1: 0x92 – ICODE_STAY_QUIET

C1=>HOST: 0x00 – ACK byte
 0x92 – related command code ICODE_STAY_QUIET

10.5.4 Read block (0x93)

The read block command should be used to read data stored in TAG blocks. It takes as arguments the block number of

the first block to be read, and the number of blocks to be read. The returned ACK answer contains data read from the

109

specified tag memory. The number of bytes of this data is ICODE block size (4) multiplied by the number of blocks to

be read.

Command description

Argument Size Value Description

Command ID 1 0x93 ICODE_READ_BLOCK

Block number 1 X

Block count 1 N Number of block to read

Response description

ACK 1 0x00

Command ID 1 0x93 ICODE_READ_BLOCK

Read data 4*N XXX Bytes read from the tag.

Example:

HOST=>C1: 0x93 – ICODE_READ_BLOCK
 0x02 – block number 2
 0x01 – 1 block to read

C1=>HOST: 0x00 – ACK byte
 0x93 – related command code ICODE_READ_BLOCK
 0x35 0x3a 0x30 0x33 – 4 bytes block data

10.5.5 Write block (0x94)

The write block command should be used to write data to the tag. It takes as arguments the block number of the first

block to write, the number of blocks to write, and the bytes to be written. The number of bytes to be written must be

exactly the number of blocks to write multiplied by 4.

Command description

Argument Size Value Description

Command ID 1 0x94 ICODE_WRITE_BLOCK

Block number 1 X

Block count 1 N

Data to write 4*N X 4-bytes data to write

Response description

ACK 1 0x00

Command ID 1 0x94 ICODE_WRITE_BLOCK

Example:

HOST=>C1: 0x94 – ICODE_WRITE_BLOCK
 0x02 – block number 2
 0x01 – block count 1
 0x35 0x3a 0x30 0x33 – 4 bytes to write

C1=>HOST: 0x00 – ACK byte
 0x94 – related command code ICODE_WRITE_BLOCK

110

10.5.6 Lock block (0x95)

This command performs a lock block command. Once it receives the lock block command, the TAG permanently locks

the requested block. The command takes a one-byte argument representing the block number to be locked.

Command description

Argument Size Value Description

Command ID 1 0x95 ICODE_LOCK_BLOCK

Block number 1 X

Response description

ACK 1 0x00

Command ID 1 0x95 ICODE_LOCK_BLOCK

Example:

HOST=>C1: 0x95 – ICODE_LOCK_BLOCK
 0x02 – block number 2

C1=>HOST: 0x00 – ACK byte
 0x95 – related command code ICODE_LOCK_BLOCK

10.5.7 Write AFI (0x96)

This command performs a write to Application Family Identifier value inside the TAG memory. The command takes a

one-byte argument representing the AFI value.

Command description

Argument Size Value Description

Command ID 1 0x96 ICODE_WRITE_AFI

AFI value 1 X

Response description

ACK 1 0x00

Command ID 1 0x96 ICODE_WRITE_AFI

Example:

HOST=>C1: 0x96 – ICODE_WRITE_AFI
 0xAA – new Application Family Identifier value

C1=>HOST: 0x00 – ACK byte
 0x96 – related command code ICODE_WRITE_AFI

10.5.8 Lock AFI (0x97)

This command performs a Lock AFI command on the TAG. When it receives the lock AFI request, the TAG locks the

AFI value permanently into its memory.

111

Command description

Argument Size Value Description

Command ID 1 0x97 ICODE_LOCK_AFI

Response description

ACK 1 0x00

Command ID 1 0x97 ICODE_LOCK_AFI

Example:

HOST=>C1: 0x96 – ICODE_LOCK_AFI

C1=>HOST: 0x00 – ACK byte
 0x96 – related command code ICODE_LOCK_AFI

10.5.9 Write DSFID (0x98)

This command performs a write to Data Storage Format Identifier value inside the TAG memory. This command takes

a one-byte argument representing the DSFID value.

Command description

Argument Size Value Description

Command ID 1 0x98 ICODE_WRITE_DSFID

DSFID value 1 X

Response description

ACK 1 0x00

Command ID 1 0x98 ICODE_WRITE_DSFID

Example:

HOST=>C1: 0x98 – ICODE_WRITE_DSFID
 0xAA – new Data Storage Format Identifier value

C1=>HOST: 0x00 – ACK byte
 0x98 – related command code ICODE_WRITE_DSFID

10.5.10 Lock DSFID (0x99)

This command performs a Lock DSIFD command on the TAG. When it receives the lock DSFID request, the TAG locks

the DSFID value permanently into its memory.

Command description

Argument Size Value Description

Command ID 1 0x99 ICODE_LOCK_DSFID

Response description

ACK 1 0x00

Command ID 1 0x99 ICODE_LOCK_DSFID

112

Example:

HOST=>C1: 0x99 – ICODE_LOCK_DSFID

C1=>HOST: 0x00 – ACK byte
 0x99 – related command code ICODE_LOCK_DSFID

10.5.11 Get System Information (0x9A)

This command performs get system information command on the TAG. No arguments are required. The ACK response

contains bytes with system information. Please refer to the NXP documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0x9A ICODE_GET_SYSTEM_INFORMATION

Response description

ACK 1 0x00

Command ID 1 0x9A ICODE_GET_SYSTEM_INFORMATION

System information X XXX System information bytes

Example:

HOST=>C1: 0x9A – ICODE_GET_SYSTEM_INFORMATION

C1=>HOST: 0x00 – ACK byte
 0x9A – related command code ICODE_GET_SYSTEM_INFORMATION
 0x0F 0x04 0x8F 0x7F 0x0A 0x01 0x24
 0x16 0xE0 0x00 0x00 0x33 0x03 0x02 – result bytes

10.5.12 Get multiple BSS (0x9B)

This command performs get multiple block security status command on the TAG. It takes as arguments the block

number for which the status should be returned and the number of blocks to be used for returning the status. The ACK

response contains bytes with block security status information. Please refer to the NXP documentation for more

information.

Command description

Argument Size Value Description

Command ID 1 0x9B ICODE_GET_MULTIPLE_BSS

First block number 1 X

Number of blocks 1 N

Response description

ACK 1 0x00

Command ID 1 0x9B ICODE_GET_MULTIPLE_BSS

BSS information N X Blocks security status information

Example:

113

HOST=>C1: 0x9B – ICODE_GET_MULTIPLE_BSS
 0x00 – starting block number
 0x08 – number of BSS to read

C1=>HOST: 0x00 – ACK byte
 0x9B – related command code ICODE_GET_MULTIPLE_BSS
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 – result bytes

10.5.13 Password protect AFI (0x9C)

This command enables the password protection for AFI. The AFI password has to be transmitted before with

ICODE_SET_PASSWORD command.

Command description

Argument Size Value Description

Command ID 1 0x9C ICODE_PASSWORD_PROTECT_AFI

Response description

ACK 1 0x00

Command ID 1 0x9C ICODE_PASSWORD_PROTECT_AFI

Example:

HOST=>C1: 0x9C – ICODE_PASSWORD_PROTECT_AFI

C1=>HOST: 0x00 – ACK byte
 0x9C – related command code ICODE_PASSWORD_PROTECT_AFI

10.5.14 Read EPC (0x9D)

This command reads EPC data from the TAG. The ACK response contains 12-bytes of EPC data. Please refer to the NXP

documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0x9D ICODE_READ_EPC

Response description

ACK 1 0x00

Command ID 1 0x9D ICODE_READ_EPC

EPC information 12 X Please refer to the NXP documentation for more information.

Example:

HOST=>C1: 0x9D – ICODE_READ_EPC

C1=>HOST: 0x00 – ACK byte
 0x9D – related command code ICODE_READ_EPC
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 – result bytes

114

10.5.15 Get NXP System Information (0x9E)

This command retrieves the NXP system information value from the TAG. No arguments are required. The ACK

response contains bytes with the NXP system information. Please refer to the NXP documentation for more

information.

Command description

Argument Size Value Description

Command ID 1 0x9E ICODE_GET_NXP_SYSTEM_INFORMATION

Response description

ACK 1 0x00

Command ID 1 0x9E ICODE_GET_NXP_SYSTEM_INFORMATION

System information X XXX System information bytes

Example:

HOST=>C1: 0x9E – ICODE_GET_NXP_SYSTEM_INFORMATION

C1=>HOST: 0x00 – ACK byte
 0x9E – related command code ICODE_GET_NXP_SYSTEM_INFORMATION
 0x0F 0x04 0x8F 0x7F 0x0A 0x01 0x24
 0x16 0xE0 0x00 0x00 0x33 0x03 0x02 – result bytes

10.5.16 Get random number (0x9F)

This command requests a random number from the ICODE TAG. No arguments are required. The ACK response

contains a 16-bit random number. This value should be used with ICODE_SET_PASSWORD command.

Command description

Argument Size Value Description

Command ID 1 0x9F ICODE_GET_RANDOM_NUMBER

Response description

ACK 1 0x00

Command ID 1 0x9F ICODE_GET_RANDOM_NUMBER

Random number 2 XXX 16-bits random number

Example:

HOST=>C1: 0x9F – ICODE_GET_RANDOM_NUMBER

C1=>HOST: 0x00 – ACK byte
 0x9F – related command code ICODE_GET_RANDOM_NUMBER
 0x7F 0x14 – result bytes

10.5.17 Set password (0xA0)

This command sets the password for the selected identifier. This command has to be executed just once for the related

passwords if the TAG is powered. The password is calculated as XOR with the random number returned by the

previously executed command ICODE_GET_RANDOM_NUMBER.

115

Here is an example how to calculate XOR password:

xorPassword[0] = password[0] ^ rnd[0];
xorPassword[1] = password[1] ^ rnd[1];
xorPassword[2] = password[2] ^ rnd[0];
xorPassword[3] = password[3] ^ rnd[1];

Command description

Argument Size Value Description

Command ID 1 0xA0 ICODE_SET_PASSWORD

Password Identifier 1 X

0x01 – Read password
0x02 – Write password
0x04 – Privacy password
0x08 – Destroy password
0x10 - EAS/AFI password

XOR Password 4 X

Response description

ACK 1 0x00

Command ID 1 0xA0 ICODE_SET_PASSWORD

Example:

HOST=>C1: 0xA0 – ICODE_SET_PASSWORD
 0x02 – write password
 0x34 0x76 0x39 0x64 – calculated XOR password
C1=>HOST: 0x00 – ACK byte
 0xA0 – related command code ICODE_SET_PASSWORD

10.5.18 Write password (0xA1)
This command writes a new password to a selected identifier. With this command, a new password is written into the

related memory. Note that the old password has to be transmitted before with ICODE_SET_PASSWORD. The new

password takes effect immediately which means that the new password has to be transmitted with

ICODE_SET_PASSWORD to get access to the protected blocks/pages. It takes as arguments the password identifier

byte and the plain password 4-bytes long.

Command description

Argument Size Value Description

Command ID 1 0xA1 ICODE_WRITE_PASSWORD

Password Identifier 1 X

0x01 – Read password
0x02 – Write password
0x04 – Privacy password
0x08 – Destroy password
0x10 - EAS/AFI password

Password 4 X Plain password

Response description

ACK 1 0x00

Command ID 1 0xA1 ICODE_WRITE_PASSWORD

116

Example:

HOST=>C1: 0xA1 – ICODE_WRITE_PASSWORD
 0x02 – write password
 0x34 0x76 0x39 0x64 – Plain password

C1=>HOST: 0x00 – ACK byte
 0xA1 – related command code ICODE_WRITE_PASSWORD

10.5.19 Lock password (0xA2)

This command locks the addressed password. Note that the addressed password has to be transmitted before with

ICODE_SET_PASSWORD. A locked password can no longer be changed.

Command description

Argument Size Value Description

Command ID 1 0xA2 ICODE_LOCK_PASSWORD

Password Identifier 1 X

0x01 – Read password
0x02 – Write password
0x04 – Privacy password
0x08 – Destroy password
0x10 - EAS/AFI password

Response description

ACK 1 0x00

Command ID 1 0xA2 ICODE_LOCK_PASSWORD

Example:

HOST=>C1: 0xA2 – ICODE_LOCK_PASSWORD
 0x02 – write password

C1=>HOST: 0x00 – ACK byte
 0xA2 – related command code ICODE_LOCK_PASSWORD

10.5.20 Protect page (0xA3)

This command changes the protection status of a page. Note that the related passwords have to be transmitted before

with ICODE_SET_PASSWORD if the page is not public. Please refer to the NXP documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0xA3 ICODE_PAGE_PROTECT

Page address 1 X

• Page number to be protected in case of products that do not have
pages characterized as high and Low.

• Block number to be protected in case of products that have pages
characterized as high and Low.

117

Protection status 1 X

• Protection status options for the products that do not have pages
characterized as high and Low:
0x00: ICODE_PROTECT_PAGE_PUBLIC
0x01: ICODE_PROTECT_PAGE_READ_WRITE_READ_PASSWORD
0x10: ICODE_PROTECT_PAGE_WRITE_PASSWORD
0x11: ICODE_PROTECT_PAGE_READ_WRITE_PASSWORD_SEPERATE

• Extended Protection status options for the products that have pages
characterized as high and Low:

0x01: ICODE_PROTECT_PAGE_READ_LOW
0x02: ICODE_PROTECT_PAGE_WRITE_LOW
0x10: ICODE_PROTECT_PAGE_READ_HIGH
0x20: ICODE_PROTECT_PAGE_WRITE_HIGH

Response description

ACK 1 0x00

Command ID 1 0xA2 ICODE_PAGE_PROTECT

Example:

HOST=>C1: 0xA3 – ICODE_PAGE_PROTECT
 0x02 – second block selected
 0x01 - ICODE_PROTECT_PAGE_READ_LOW flag selected

C1=>HOST: 0x00 – ACK byte
 0xA3 – related command code ICODE_PAGE_PROTECT

10.5.21 Lock page protection (0xA4)

This command permanently locks the protection status of a page. Note that the related passwords have to be

transmitted before with ref ICODE_SET_PASSWORD if the page is not public.

Command description

Argument Size Value Description

Command ID 1 0xA4 ICODE_LOCK_PAGE_PROTECTION

Page number 1 X

Response description

ACK 1 0x00

Command ID 1 0xA4 ICODE_LOCK_PAGE_PROTECTION

Example:

HOST=>C1: 0xA4 – ICODE_LOCK_PAGE_PROTECTION
 0x02 – page number
C1=>HOST: 0x00 – ACK byte
 0xA4 – related command code ICODE_LOCK_PAGE_PROTECTION

118

10.5.22 Get multiple block protection status (0xA5)

This instructs the label to return the block protection status of the requested blocks. It takes as arguments the first

block number to get the block protection status and the number of blocks.

Command description

Argument Size Value Description

Command ID 1 0xA5 ICODE_GET_MULTIPLE_BPS

First block number 1 X

Number of blocks 1 N

Response description

ACK 1 0x00

Command ID 1 0xA5 ICODE_GET_MULTIPLE_BPS

BSS information N X Blocks protection status information

Example:

HOST=>C1: 0xA5 – ICODE_GET_MULTIPLE_BPS
 0x00 – starting block number
 0x08 – number of BSS to read

C1=>HOST: 0x00 – ACK byte
 0xA5 – related command code ICODE_GET_MULTIPLE_BPS
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 – result bytes

10.5.23 Destroy (0xA6)

This command permanently destroys the label (tag). The destroy password has to be transmitted before with

ICODE_SET_PASSWORD. This command is irreversible and the label will never respond to any command again. This

command can take the XOR password argument for the ICODE products that requires this argument. The XOR

password calculation method is described in the ICODE_SET_PASSWORD description.

Command description

Argument Size Value Description

Command ID 1 0xA6 ICODE_DESTROY

XOR password 4 X Optional XOR password

Response description

ACK 1 0x00

Command ID 1 0xA6 ICODE_DESTROY

Example:

HOST=>C1: 0xA6 – ICODE_DESTROY

C1=>HOST: 0x00 – ACK byte
 0xA6 – related command code ICODE_DESTROY

119

10.5.24 Enable privacy (0xA7)

This command instructs the label to enter privacy mode. In privacy mode, the label will only respond to

ICODE_GET_RANDOM_NUMBER and ICODE_SET_PASSWORD commands. To get out of the privacy mode, the Privacy

password has to be transmitted before with ICODE_SET_PASSWORD.

Command description

Argument Size Value Description

Command ID 1 0xA7 ICODE_ENABLE_PRIVACY

XOR password 4 X Optional XOR password

Response description

ACK 1 0x00

Command ID 1 0xA7 ICODE_ENABLE_PRIVACY

Example:

HOST=>C1: 0xA7 – ICODE_ENABLE_PRIVACY

C1=>HOST: 0x00 – ACK byte
 0xA7 – related command code ICODE_ENABLE_PRIVACY

10.5.25 Enable 64-bit password (0xA8)

This instructs the label that both Read and Write passwords are required for protected access. Note that both the

Read and Write passwords have to be transmitted before with ICODE_SET_PASSWORD.

Command description

Argument Size Value Description

Command ID 1 0xA8 ICODE_ENABLE_64BIT_PASSWORD

Response description

ACK 1 0x00

Command ID 1 0xA8 ICODE_ENABLE_64BIT_PASSWORD

Example:

HOST=>C1: 0xA8 – ICODE_ENABLE_64BIT_PASSWORD

C1=>HOST: 0x00 – ACK byte
 0xA8 – related command code ICODE_ENABLE_64BIT_PASSWORD

10.5.26 Read signature (0xA9)

This command reads the signature bytes from the TAG. No arguments are required. The ACK response contains bytes

containing the signature bytes. Please refer to the NXP documentation for more information.

Command description

Argument Size Value Description

120

Command ID 1 0xA9 ICODE_READ_SIGNATURE

Response description

ACK 1 0x00

Command ID 1 0xA9 ICODE_READ_SIGNATURE

Signature bytes X XXX Signature bytes

Example:

HOST=>C1: 0xA9 – ICODE_READ_SIGNATURE

C1=>HOST: 0x00 – ACK byte
 0xA9 – related command code ICODE_READ_SIGNATURE
 0x0F 0x04 0x8F 0x7F 0x0A 0x01 0x24
 0x16 0xE0 0x00 0x00 0x33 0x03 0x02 – result bytes

10.5.27 Extended read block (0xB3)

The extended read block command should be used to read data stored in TAG blocks but only if the tag supports this

command – if you are not sure please use ICODE_READ_BLOCK command. It takes as arguments the block number of

the first block to be read, and the number of blocks to be read. The returned ACK answer contains data read from the

specified tag memory. The number of bytes of this data is ICODE block size (4) multiplied by the number of blocks to

be read.

Command description

Argument Size Value Description

Command ID 1 0xB3 ICODE_EXT_READ_BLOCK

Block number 2 X Unsigned 16bit value with LSB order.

Block count 1 N Number of block to read

Response description

ACK 1 0x00

Command ID 1 0xB3 ICODE_EXT_READ_BLOCK

Read data 4*N XXX Bytes read from the tag.

Example:

HOST=>C1: 0xB3 – ICODE_EXT_READ_BLOCK
 0x02 0x00 – block number 2
 0x01 – 1 block to read

C1=>HOST: 0x00 – ACK byte
 0xB3 – related command code ICODE_EXT_READ_BLOCK
 0x35 0x3a 0x30 0x33 – 4 bytes block data

121

10.5.28 Extended write block (0xB4)

The extended write block command should be used to write data to the tag but only if the tag supports this command

– if you are not sure please use ICODE_WRITE_BLOCK command. It takes as arguments the block number of the first

block to write, the number of blocks to write, and the bytes to be written. The number of bytes to be written must be

exactly the number of blocks to write multiplied by 4.

Command description

Argument Size Value Description

Command ID 1 0xB4 ICODE_EXT_WRITE_BLOCK

Block number 2 X Unsigned 16bit value with LSB order.

Block count 1 N

Data to write 4*N X 4-bytes data to write

Response description

ACK 1 0x00

Command ID 1 0xB4 ICODE_EXT_WRITE_BLOCK

Example:

HOST=>C1: 0xB4 – ICODE_EXT_WRITE_BLOCK
 0x02 0x00 – block number 2
 0x01 – block count 1
 0x35 0x3a 0x30 0x33 – 4 bytes to write

C1=>HOST: 0x00 – ACK byte
 0xB4 – related command code ICODE_WRITE_BLOCK

10.5.29 Read config (0xAA)

This command reads multiple 4-byte data chunks from the selected configuration block address. It takes two

arguments, the first block number and the number of blocks to read the configuration data.

Command description

Argument Size Value Description

Command ID 1 0xAA ICODE_READ_CONFIG

First block number 1 X

Number of blocks 1 N

Response description

ACK 1 0x00

Command ID 1 0xAA ICODE_READ_CONFIG

Configuration bytes N*4 X

Example:

122

HOST=>C1: 0xAA – ICODE_READ_CONFIG
 0x00 – starting block number
 0x02 – number of blocks to read

C1=>HOST: 0x00 – ACK byte
 0xAA – related command code ICODE_READ_CONFIG
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 – result bytes

10.5.30 Write config (0xAB)

This command writes configuration bytes to addressed block data from the selected configuration block address. It

takes three arguments: the option byte, the block number and the configuration bytes. Please refer to the NXP

documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0xAB ICODE_WRITE_CONFIG

Option byte 1 X
0x01 – Enable option
0x00 – Disable option

Block number 1 X

Configuration bytes 4 X

Response description

ACK 1 0x00

Command ID 1 0xAB ICODE_WRITE_CONFIG

Example:

HOST=>C1: 0xAB – ICODE_WRITE_CONFIG
 0x01 – option byte
 0x00 – block number
 0x00 0x00 0x00 0x00 – config bytes
C1=>HOST: 0x00 – ACK byte
 0xAB – related command code ICODE_WRITE_CONFIG

10.5.31 Pick random ID (0xAC)

This command enables the random ID generation in the tag. This interface is used to instruct the tag to generate

a random number in privacy mode. Please refer to the NXP documentation for more information.

Command description

Argument Size Value Description

Command ID 1 0xAC ICODE_PICK_RANDOM_ID

Response description

ACK 1 0x00

Command ID 1 0xAC ICODE_PICK_RANDOM_ID

Example:

123

HOST=>C1: 0xAB – ICODE_PICK_RANDOM_ID

C1=>HOST: 0x00 – ACK byte
 0xAB – related command code ICODE_PICK_RANDOM_ID

10.5.32 ICODE custom command (15693) (0xBF)

From firmware version 2.51 onwards, the reader is capable to send custom commands over ISO 15693 protocol. The

device adds SOF, EOF, and CRC16 automatically so the host has to prepare only the content of the frame. The ACK

frame contains bytes received from the tag including response flags and all bytes except SOF, EOF, CRC16.

This command can be useful if you want to execute non-standard commands to tags like ST25. The first execution of

the command enables the RF field. It can be mixed with standard commands, so the host software can execute the

inventory command first and then send a custom command to do non-standard operations on the TAG.

Command description

Argument Size Value Description

Command ID 1 0xBF ICODE_CUSTOM_COMMAND

DATA X X Custom data send to the TAG

Response description

ACK 1 0x00

Command ID 1 0xBF ICODE_CUSTOM_COMMAND

ACK data x x Bytes received from the TAG

Example inventory command:

HOST=>C1: 0xBF – ICODE_CUSTOM_COMMAND
 26 01 00 – inventory command bytes

C1=>HOST: 0x00 – ACK byte
 0xBF – related command code ICODE_CUSTOM_COMMAND
 00 00 0F B0 30 02 00 39 02 E0 – tag response with response
flags bytes

10.6 OTA upgrade

The commands listed below can be used to perform an OTA upgrade. The latest OTA file is always available here:

http://eccel.co.uk/wp-content/downloads/Pepper_C1/Pepper_C1.ver

10.6.1 OTA begin (0xF0)

This command must be executed to start the OTA upgrade process. The device responds with an ACK frame when the

command is finished.

http://eccel.co.uk/wp-content/downloads/Pepper_C1/Pepper_C1.ver

124

Command description

Argument Size Value Description

Command ID 1 0x0F0 OTA begin

Response description

ACK 1 0x00

Command ID 1 0xF0 OTA begin

Example:

HOST=>C1: 0xF0 – OTA begin

C1=>HOST: 0x00 – ACK byte
 0xF0 – related command code OTA begin

10.6.2 OTA firmware frame (0xF1)

When the OTA begin frame has already been executed, the host application can upload binary firmware file in chunks

that are 128 bytes long (the last frame may be smaller).

Command description

Argument Size Value Description

Command ID 1 0x0F1 OTA frame

Firmware bytes
Max.
128

 Firmware bytes in chunks 128bytes long.

Response description

ACK 1 0x00

Command ID 1 0xF1 OTA frame

Example:

HOST=>C1: 0xF1 – OTA frame
 0x34 0x67 … 0x45 – firmware bytes

C1=>HOST: 0x00 – ACK byte
 0xF1 – related command code OTA frame

10.6.3 OTA finish (0xF2)

The command must be executed after all firmware frames are written to the device. The bootloader application checks

the integrity of the application. After this step the host can send the REBOOT command to reboot the device and run

the new firmware. If there is a problem with communication after a device upgrade, please perform a factory reset.

Command description

Argument Size Value Description

Command ID 1 0x0F2 OTA finish

Response description

ACK 1 0x00

Command ID 1 0xF2 OTA finish

Example:

125

HOST=>C1: 0xF4 – OTA finish

C1=>HOST: 0x00 – ACK byte
 0xF4 – related command code OTA finish

126

11. Revision history

Revision Date Changes

1.0 2-Apr-2024 First release after splitting software and hardware description

1.1 5-Jun-2024 New command ICODE_CUSTOM_COMMAND

1.2 11-Jun-2024 Network configuration section description update

GPIO command (0x0E) description update

New parameters for Custom text in polling setup (tag type and SAK/DSFID)

1.3 09-Jul-2024 WPAN sections updated

1.4 18-Sep-24 Updated description about JSON parser for MQTT and Websocket

Sleep command updated

New feature “Known tags on all antennas” described in section 9.1.6

1.5 02-Dec-2024 Sleep configuration command added, light sleep mode added, and LPCD functionality

MIFARE, MIFARE Ultralight, MIFARE Plus, MIFARE Classic, and MIFARE DESFire are trademarks of NXP B.V.

No responsibility is taken for the method of integration or final use of the Pepper C1 readers.

More information about the Pepper C1 family and other products can be found at the Internet site:

http://www.eccel.co.uk

or alternatively contact ECCEL Technology (IB Technology) by e-mail at:

sales@eccel.co.uk

	1. Configuration – Web Interface
	1.1 Network Configuration
	1.1.1 Wi-Fi Access Point mode
	1.1.2 Wi-Fi Client mode
	1.1.3 Disabling wireless communication

	1.2 RFID
	1.3 Communication interfaces
	1.3.1 General configuration
	1.3.2 UART configuration
	1.3.3 TCP Client/Server
	1.3.4 2.4GHz wireless communication (WPAN)
	1.3.5 MQTT
	1.3.6 REST API interface
	1.3.7 Web sockets

	1.4 Miscellaneous options
	1.5 Status
	1.6 Firmware upgrade
	1.7 Backup & Restore

	2. Rescue mode and factory reset
	2.1 Rescue mode
	2.2 Automatic rescue mode
	2.3 Resetting module to factory defaults

	3. Sleep mode
	4. JSON interface for MQTT and WebSocket protocols
	4.1 Status frame
	4.2 RFID frame
	4.3 UART passthru frame
	4.4 Event frame
	4.4.1 Set GPIO high/low
	4.4.2 Toggle GPIO high/low
	4.4.3 UART passthru event
	4.4.4 LED event
	4.4.5 Read tag command
	4.4.6 Write tag command

	5. Communication interface – binary interface
	5.1 Overview
	5.2 Frame structure
	5.3 CRC calculation
	5.4 Pepper C1 Client – PC application

	6. WPAN interface
	6.1 WPAN Serial Port Profile
	6.2 WPAN Low Energy GATT service
	6.2.1 WPAN Low Energy GATT as an additional interface

	6.3 WPAN LE HID profile
	6.4 WPAN bridge extension

	7. RS-485 Communication
	7.1 Modbus RTU
	7.2 Binary protocol over RS-485

	8. Key storage
	9. Polling mode
	9.1 Web configuration for polling mode
	9.1.1 Supported technologies
	9.1.2 RFID power settings
	9.1.3 Polling loop settings
	9.1.4 Read memory settings
	9.1.5 Polling events
	9.1.6 Extra settings for MUX device

	9.2 Known UID list

	10. Commands list
	10.1 Generic commands
	10.1.1 Acknowledge frame (0x00)
	10.1.2 Error response (0xFF)
	10.1.3 Dummy command (0x01)
	10.1.4 Get tag count (0x02)
	10.1.5 Get tag UID (0x03)
	10.1.6 Activate TAG (0x04)
	10.1.7 Halt (0x05)
	10.1.8 Set polling (0x06)
	10.1.9 Set key (0x07)
	10.1.10 Save keys (0x08)
	10.1.11 Network config (0x09)
	10.1.11.1 Setting Wi-Fi mode
	10.1.11.2 Wi-Fi authorization mode
	10.1.11.3 Wi-Fi channel
	10.1.11.4 Wi-Fi network SSID
	10.1.11.5 Wi-Fi network password
	10.1.11.6 Network IP address mode
	10.1.11.7 Network IP addresses
	10.1.11.8 Web Interface user name and password (0x09)

	10.1.12 Reboot (0x0A)
	10.1.13 Get version (0x0B)
	10.1.14 UART passthru (0x0C)
	10.1.15 Sleep command (0x0D)
	10.1.16 GPIO command (0x0E)
	10.1.17 Set active antenna (0x0F) – Pepper C1 MUX only
	10.1.18 WPAN pin command (0x10)
	10.1.19 Factory reset command (0x11)
	10.1.20 Protocol authorization (0x12)
	10.1.21 Protocol configuration (0x13)
	10.1.21.1 General settings
	10.1.21.2 UART settings
	10.1.21.3 TCP server settings
	10.1.21.4 TCP client settings
	10.1.21.5 WPAN settings
	10.1.21.6 MQTT client settings
	10.1.21.7 REST API settings
	10.1.21.8 Web socket settings

	10.1.22 LED command (0x14)
	10.1.23 WPAN data command(0x15)
	10.1.24 Polling setup (0x16)
	10.1.24.1 Supported technologies (0x00)
	10.1.24.2 RFID power (0x01)
	10.1.24.3 Internal polling control (0x02)
	10.1.24.4 Polling timeout (0x03)
	10.1.24.5 Ignore timeout (0x04)
	10.1.24.6 Polling antennas (0x05) - MUX only
	10.1.24.7 Polling event packet (0x06)
	10.1.24.8 Polling LED event (0x07)
	10.1.24.9 Polling GPIO event (0x08)
	10.1.24.10 Event duration (0x09)
	10.1.24.11 Polling event custom text format (0x0A)
	10.1.24.12 Known tags on all antennas (0x0B)

	10.1.25 Sleep setup (0x17)
	10.1.25.1 Use light sleep (0x00)
	10.1.25.2 Get tag command on boot (0x01)
	10.1.25.3 No tag in range timeout (0x02)
	10.1.25.4 Enter sleep mode when tag is detected (0x03)
	10.1.25.5 Use LPCD in light sleep (0x04)
	10.1.25.6 LPCD polling timeout (0x05)
	10.1.25.7 Wake up timer (0x06)
	10.1.25.8 Wake up triggers (0x07)

	10.1.26 LOG forwarding (0xE4)

	10.2 MIFARE Classics commands
	10.2.1 Read block (0x20)
	10.2.2 Write block (0x21)
	10.2.3 Read value (0x22)
	10.2.4 Write value (0x23)
	10.2.5 Increment/decrement value (0x24)
	10.2.6 Transfer value (0x25)
	10.2.7 Restore value (0x26)
	10.2.8 Transfer-Restore value (0x27)

	10.3 MIFARE Ultralight commands
	10.3.1 Read page (0x40)
	10.3.2 Write page (0x41)
	10.3.3 Get version (0x42)
	10.3.4 Read signature (0x43)
	10.3.5 Write signature (0x44)
	10.3.6 Lock signature (0x45)
	10.3.7 Read counter (0x46)
	10.3.8 Increment counter (0x47)
	10.3.9 Password auth (0x48)
	10.3.10 Ultralight-C authenticate (0x49)
	10.3.11 Check Tearing Event (0x4A)

	10.4 MIFARE DESFire commands
	10.4.1 Get version (0x60)
	10.4.2 Select application (0x61)
	10.4.3 List application IDs (0x62)
	10.4.4 List files IDs (0x63)
	10.4.5 Authenticate (0x64)
	10.4.6 Authenticate ISO (0x65)
	10.4.7 Authenticate AES (0x66)
	10.4.8 Create application (0x67)
	10.4.9 Delete application (0x68)
	10.4.10 Change key (0x69)
	10.4.11 Get key settings (0x6A)
	10.4.12 Change key settings (0x6B)
	10.4.13 Create standard or backup data file (0x6C)
	10.4.14 Write data (0x6D)
	10.4.15 Read data (0x6E)
	10.4.16 Create value file (0x6F)
	10.4.17 Get value (0x70)
	10.4.18 Credit file (0x71)
	10.4.19 Limited credit file (0x72)
	10.4.20 Debit file (0x73)
	10.4.21 Create record file (0x74)
	10.4.22 Write record (0x75)
	10.4.23 Read record (0x76)
	10.4.24 Clear records (0x77)
	10.4.25 Delete file (0x78)
	10.4.26 Get free memory (0x79)
	10.4.27 Format memory (0x7A)
	10.4.28 Commit transaction (0x7B)
	10.4.29 Abort transaction (0x7C)
	10.4.30 Get file settings file (0x7D)
	10.4.31 Set file settings (0x7E)

	10.5 ICODE (ISO15693) commands
	10.5.1 Inventory start (0x90)
	10.5.2 Inventory next (0x91)
	10.5.3 Stay quiet (0x92)
	10.5.4 Read block (0x93)
	10.5.5 Write block (0x94)
	10.5.6 Lock block (0x95)
	10.5.7 Write AFI (0x96)
	10.5.8 Lock AFI (0x97)
	10.5.9 Write DSFID (0x98)
	10.5.10 Lock DSFID (0x99)
	10.5.11 Get System Information (0x9A)
	10.5.12 Get multiple BSS (0x9B)
	10.5.13 Password protect AFI (0x9C)
	10.5.14 Read EPC (0x9D)
	10.5.15 Get NXP System Information (0x9E)
	10.5.16 Get random number (0x9F)
	10.5.17 Set password (0xA0)
	10.5.18 Write password (0xA1)
	10.5.19 Lock password (0xA2)
	10.5.20 Protect page (0xA3)
	10.5.21 Lock page protection (0xA4)
	10.5.22 Get multiple block protection status (0xA5)
	10.5.23 Destroy (0xA6)
	10.5.24 Enable privacy (0xA7)
	10.5.25 Enable 64-bit password (0xA8)
	10.5.26 Read signature (0xA9)
	10.5.27 Extended read block (0xB3)
	10.5.28 Extended write block (0xB4)
	10.5.29 Read config (0xAA)
	10.5.30 Write config (0xAB)
	10.5.31 Pick random ID (0xAC)
	10.5.32 ICODE custom command (15693) (0xBF)

	10.6 OTA upgrade
	10.6.1 OTA begin (0xF0)
	10.6.2 OTA firmware frame (0xF1)
	10.6.3 OTA finish (0xF2)

	11. Revision history

