Pepper C1 software manual

Manual version: V1.5

02/12/2024

Table of Contents
1. Configuration — Web INterfacecccooviiiiiiiirrrcscrrrssss 7
1.1 Network Configuration ..., 7
1.1.1 Wi-Fi ACCESS POINT MOTE.ceiiiiiiiiiiiiiiie ettt sttt e st e e s e e s eee e snreeeenaas 7
11,2 Wi-Fi ClIENE MOTE ..ottt et e e sttt e st e st e e e st et e e sanreeessnreeeenans 8
1.1.3 Disabling wireless communicationccccooiiiiiiii 9
0 1 O PP PO T PP PPPPPP PRI 10
1.3 COMMUNICALION INTEITACES ... eeeiiiieiiiee ettt ettt e e s e e e s aab et e s s et e e snbeeeesaanneeens 10
1.3.1 General configuration. ..., 10
1.3.2 UART configUurationcccooeiiiiiii 10
1.3.3 TOP Cli Nt/ SOV oo e 11
1.3.4 2.4GHz wireless communication (WPAN)uuuiiiiiiiiiieetiiee ettt e e e e eeeee e e eeeeeeresaraaeeeeaaeens 11
I TR V(@ I PP PP T PSPPSR OPPPPTOPPP 11
1.3.6 REST APIINEEITACE .. eeeiieeieieeee ettt ettt e et e st e s abr e e e smbeeeeeannreee s 12
1,37 WED SOCKETS ...ttt ettt ettt e sttt e s sttt e e s st e e et e e e e snbee e e eanrreee s 13
1.4 Miscellaneous OPLtioNS.......ccoi i 13
L5 SAtUS oo 15
1.6 FirMWare UPEIrade.....cccc oo iiiiii e, 15
1.7 Backup & RESTOIE .cccciiiiiiicc e 16
2. RescUe MOdE ANd FACLOrY FESELcciiiiiirrieeiiiiiieieeeeeeeeeeeesesessessessessseessssssassssasssssssssssssssasssssssssssssssssssssssssassansnns 17
N R 0=t ol UL 44T Yo L= PP PP PPPRT PP 17
2.2 AULOMALIC FESCUE MOTE .eeiiiiiiiiiitieeie ettt et e e e s s e e e e e e s s s b b et e e e e e e sasannreeeeeeeessaannnrraeeas 17
2.3 Resetting module to factory defaUlts.........uuiiiiiiiiiiiiiiiiiieeeeeeeeieeeeeeee et eeeeeeeeeeeeeeeeeseseessessssessssssssssassssssnnannes 17
S TR (=Y=T o N 4 o Uo T =T U UPTTO RNt 18
4. JSON interface for MQTT and WebSocket Protocolsccciiiiieiiieiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseseeseessesseeen 20

1 The newest software manual can be found on our website: https://eccel.co.uk/wp-
content/downloads/Pepper C1/C1 software manual.pdf

https://eccel.co.uk/wp-content/downloads/Pepper_C1/C1_software_manual.pdf
https://eccel.co.uk/wp-content/downloads/Pepper_C1/C1_software_manual.pdf

D &
Eccel.... .

Embedded RFID made simple

N] = 1 (L - 0o T BT P PP PPPPUPPPPPRN: 20

4.2 RFID frami@ ettt ettt e e e e ettt et e e e e e e bbbt et e e e e e e e aa bbb et e e e e e e e e b bbeeaeeeeeeaanbrbreeeaeeeeaanns 20

4.3 UART PasSthrUframe oo, 20

O VY o1 o { = o1 TP PP PP PP P OPPPTPPPPPPPNS 21
4.4.1 SEt GPIO NIGN/IOW ..ottt sttt e sbe e st e bt e nbe e st e e beesanesaneen 21

4.4.2 T0EEIE GPIO NIGN/IOW c...eevieiieiiee ettt ettt ettt e e e e te e e e e e tbe e e e s tbeeeeeabaeeeeenabaeesessbaeeaenns 21

4.4.3 UART PaSStNru @VENT ..ccceieeeieccccc e, 21

A4 LED @VENT cooiiiiiie ittt ettt e et e e e s e e e e e r et e e s b et e e s rae e e e e nreeeeeaas 21

4.4.5 Read tag CommMaNnd.....cccoooiiiiiii i 22

4.4.6 Write tag CommMaNd.......cooeeiiiii i, 22

5. Communication interface — binary INterface ... s s s s s s s s s s s s s 23
5.1 OVEIVIBW . cuiiiiiiiiiiiiiiiiiiiiii s 23

5.2 Fram@ STrUCTUN@....uueiiiiiiiiiiii s 23

5.3 CRC CAICUIRTION...ceiiiiiieieet ettt ettt e sttt e sttt e s sttt e e e b et e s e anb et e e snbeeeesannraeeenans 24

5.4 Pepper CL Client — PC appliCation e 26

LT T LT =T o - T S 27
6.1 WPAN Serial POrt Profile.. .. eei ittt et e e sttt e s st e e s et e e s anreeeenans 27

6.2 WPAN LOW ENEIZY GATT SBIVICE ceuuuiiiiiiiiiiiiiiie st itiiie e ettie et ettiis s ettt s e etaaaseeeausseaasnsseeeesanseaessansesessnseenesnneeenees 27
6.2.1 WPAN Low Energy GATT as an additional interface.......ccccoooeeoiiiiiiiiiicicc e 27

6.3 WPAN LE HID Profil@....ceeeeiieeieiiee ettt ettt ettt ettt e e et e e e st e e e e smbeeeesanneeeenans 27

6.4 WPAN DridZE EXEENSION....uuuuuitiitiiitiiiitit e nnnnnnnnnnnnnnnnnnnnnnnn 28

7. RS-485 COMMUNICAtION coccuununeerieieiiiiiiietreeettiisccsnseee e aass et s s s asss e e e s s e s s s s ssassss e e e s sssssssssnnseeeesssssssssnnns 29
% R Yoo | o TU 3 24 LU F TP P PP OPPPPPRPPPPPRI 29

7.2 Binary ProtoCOl OVEF RS-485uuuuuuuuuuuiiununiteniuen s nnnnnnnnannnnnnnnnnnnnnnnaaaaaaaaaan 31

L T | =3V (o] - T TN 32
9. POIING MOAE ... rrree e e e e e e s e e s e e s e e e e s s s e e e e e s s s e s s s e s s s s s e e s e e s s e e e e e e e e s s e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaasaaaassnnansanannn 33
9.1 Web configuration for POIING MOEuuuueei e e e s 33
9.1.1 SUPPOItEd tECNNOIOZIES. .. .uueeeeiiei e e e e e e e aaan 34

1S 20 0 A 4 o D N o o 1V V=Y Y= 1 =& PN 34

1200 G T o 1T T= i [Yo o Y=Y] o =4S 34

120 I 0T Vo W V=Y 0 Vo Y=Y T o =4S 34

1200 T o 1T F= N <Y o U 34

S
Eccel...."

Embedded RFID made simple

9.1.6 EXtra Settings fOr MUX d@VICE ...uuuuuuueiiei s 36

9.2 KNOWN UID IST..tititiieieeiiiitieeee ettt ettt e e e e e ettt et e e e e e s s bbbttt e eeeesaaanbbaeeeeeeessaaanbbbaeeeeaaessnannns 37
T 00 T 44104 F= T3 o E 1T N 38
10.1 GENEIIC COMMANGS. ...ttttttteeeeiiiiiittetteeeessatb bttt eeeeesssauabbteeeeeeesssaaabbateeeeesssaaasbbbaeeeeeessaaannsbbaeeeaeesssanssseaaaaeeens 38
10.1.1 Acknowledge frame (OX00)ceeeeeiiiiiriiieee e e e eecciireeee e e e e eeerreeeeeeeeeseabraaeeeeeessanabtaaaeeeeeeeesanrreaees 38
10.1.2 Error r@SPONSE (OXFF)..ccciiiiiiiieeee ettt ettt e e e e e et e e e e e e e e e s abbaaeeeeeeesanatasaaeeaaaeeesanssraees 38

10 0 10 T oV o VAol o oY o = o Vo N (0D 1 SRR 41
10.1.4 Gettag COUNT (OX02) ..ecceeeiiciiiieeeeeeeeeiiitir e et e e e e e eetbrreeeeeeesssabaraaeeeaaesesaassasaseaaessasansssaaeaaaaesanasssrnees 41
10.1.5 GELLAG UID (OX03) ..eeeureeeitieiiteesiiee et ee ettt e sttt ettt e sttt esabe e s bbeesabt e e sabeeesabeesabeeesabeeeanbeesabeeesabeeennneenas 42
10.1.6 ACEIVATE TAG (OXO4) . .neeeeiiiieeiitee ettt ettt ettt ettt e sttt e e ettt e st e e sttt e sabeesabeeesabeeenbeesabeeesabeeennneenas 43
10.2.7 HAE (OX05) eeeeeueeeeeuieeetiee ettt e ettt e sttt ettt e sttt e st e ettt e sttt e sab e e e bt e e sttt e sabeeebbeesabeeesabeeenbeesabbeesabeeennneeans 43
O Y=Y o Yo T a T= N (0)0) RS UUUPRP 44
10.1.9 St KeY (OX07) ccciiiiiiieeee e, 44
10.1.10SaVe KEYS (OX08) . .ceiieeeieeeee e, 45
10.1.11 Network config (0X09)ccceiiiiieieieeee 45
10.1.12 REDOOT (OXOA)....eeeeeitieeeeit ettt ettt ettt e sttt e e sttt e e st e e s sabb e e s sasb et eeabr e e e e snreeeeeaanreeens 50
10.1.13 GEL VEISION (OXOB)cceeeeeiiiiieeeeeeeieeettee e e e et eeeeeeee e eeeeeeeeat e e eeeeseesasbaeeeeeesesestbaeseeesserssssaaeeeeeerens 51
10.1.14 UART passthru (OX0C) ...ccceiiiiiiiiecceeeeee e, 51
10.1.15 Sleep command (OXOD)ccoeeiiiiiieee e, 52
10.1.16 GPIO cOMMANG (OXOE)uuuueeiieiiiiiiiiiiieeeeeeeeeettiiee e e e e et eeeetieeeeeeeeerasbaeeeeeeseeesssaaeeeesssssssanaeeeeseeens 52
10.1.17 Set active antenna (OxOF) — Pepper C1 MUX ONly ..o, 53
10.1.18 WPAN pin command (0X10)ccoieiiiiiiieiiee e, 54
10.1.19 Factory reset command (OX11) ...ccceeriiiiiiiiiii e, 54
10.1.20 Protocol authorization (0X12)ccceeeeiiiiieeeeeeeeee 55
10.1.21 Protocol configuration (OX13) ...ccceeeiiiiiiieeeee e, 55
10.1.22 LED commMand (OX14) ...cce e e, 62
10.1.23 WPAN data command(0X15).....cccceiiiiiiiiiieiieeeee e, 62
10.1.24 Polling SETUP (OX16) .cceeeeeeeeeeeeeeeee e 63
10.1.25SIE€P SETUP (OXL7) coeiieeeeeeeeeeeeeee e 72
10.1.26 LOG forwarding (OXE4)........ccoo e i 78
10.2 MIFARE ClasSiCS COMMANTASuuviriirieeeeiiiitiiieeeeeeesesiibreeeeeeeessssnbr et e e e eeessaaannreeeeeeeessaannreaeeeeaeessannnnreeeeeaaesas 80
10.2.1 Read block (OX20) ...cceeeeeeeeeeeeeeeeeee 80

S
Eccel...."

Embedded RFID made simple

10.2.2 WIITE DIOCK (OX21) vrveeeieeeeiiiiiiiieee e e e eeitte ittt e e e s e ettt e e e eeaeessaaataeeeeaaasesnnsessaeeeaaseaannnssaneaeaassssannssnnnes 80
O B U= Yo RV [T (0172 USSR 81
10.2.4 WHIITE VAlUB (0X23) .eeeeiiieeeieciiiiieeee e e e e ettt e e e s e ettt et e e e e e e s et aaeeeeaeessnasaasaeeaaaseaannsssaseaaaassaannnsrennes 82
10.2.5 Increment/decrement Value (OX24)cececcreeeeiiiieeeeeitreee e ettt e e estreeeeetreeeestbbeeeeesaraeeessabaeeeessraeens 82
10.2.6 Transfer value (OX25)cooeiiiiiieiieeeee 83
10.2.7 ReStOre vValue (OX26)coeeeeiiiieeiieeeeeeeeeee e 84
10.2.8 Transfer-Restore value (OX27)ooviv i 84
10.3 MIFARE Ultralight commandsccooiiiiiiiii 85
10.3.1 REAA PAZE (OXA0) ..ureeeeieeeeiiiiiiieeeeeeeeeecctteee e e e e e e eetbreeeeeeeessaaaaraaaeeeaeessasabtasaeeeaeesaaassraaraaeaeeaaasrreeees 85
10.3.2 WHIITE PAZE (OXAL) eureeeeeieeeiiiiiiieeee e e e e eectte et e e e e e et e e e e e e e e st aaeeeaeeeessabbaaaeeaeeesaansssaaeeaaeesannsssenees 86
10.3.3 Gt VEISION (OXA2) coooiiiiiieieieeeeee e 86
10.3.4 Read SIZNATUIE (OXA3) ...cciiiiiiiiieeee e e ettt e e e e e et e e e e e e e e et e e eeeeaeesssabraaeeeaaeesasnssaaseeeaaeeeannnsssnees 87
10.3.5 Write Signature (OX44) ..., 87
10.3.6 Lock SigNature (OX45) ...ccccii i, 88
10.3.7 REA COUNTEE (OXAB) ..coevevrrrueeeeeeiieeitiiiieeeeeeeeeettiieeeeeeeeeeettttaeeeeeserssstaaaeeeessesssrartaeeessssssssrnnaaseesssens 88
10.3.8 INCremMENT COUNTEE (OXA7) wuvuuieeiiiieeiiiiieeeeeeeeeetieeeeeeeeeeeett i eeeeeeeeeeeessaaaeeeessesssrarsaeeeessersssnnaeeeseesens 89
10.3.9 PasSWOId QULN (OXA8)uuuuuiiiiiiiieiiiiiiieeeeeeeeeetiieeeeeeeeeeett e e eeeeseeeasbaaeeeeeeseresrtaaseessssssssaaaeeeeeeeees 89
10.3.10 Ultralight-C authenticate (0X49).......ccoiiiiiiiiee e, 90
10.3.11 Check Tearing EVeNt (OXAA)ccoo i, 90
10.4 MIFARE DESFIre COMMANGS.....eiiiiiiiiiieiiiitie ettt e sttt e e ettt e s sttt e e sttt e s sttt e e sabee e e s ambeeeesaasbeeeesnbeeeeeannreeens 91
10.4.1 Get version (0X60)cccceeeeiieeee e 91
10.4.2 Select application (OX61)......cccceiiiiiiiiiieee e, 91
10.4.3 List application IDS (OX62) ...cceeeeieiieeeeeeee e, 92
10.4.4 LISt fIl@S IDS (OX63) ..eeeureeeueeeetieeiuieeeitteeetteesuteeertteesbteesubeeeseeesbeeesabeeesaeeesabeeesabeeeanseesbeeesabeeennneeaas 92
10.4.5 AULheNnticate (OXB4)ccceeeiiee e, 93
10.4.6 Authenticate ISO (OX65)ccceiiiiiieeeeeee e, 93
10.4.7 Authenticate AES (OX66)cccceiiiiieieeeeee e, 94
10.4.8 Create application (OX67).....cccceiiiiiieeeeeee e, 94
10.4.9 Delete application (OX68).......ccciiiiiiiiiieie e 95
10.4.10 Change Key (OX69)ccceeeieeeeeeeeee e 95
10.4.11 Get key settings (OXBA)ccoe i 95
10.4.12 Change key settings (OX6B)ccceeiiiiiiiee e 96

S
Eccel...."

Embedded RFID made simple

10.4.13 Create standard or backup data file (OX6C)ccevriiiiieeee e e e e e e e e aneeaes 96
10.4.14 WEItE AAtA (OXBD) ..veveeeeeeeeeeeeeeeeeeeeeeseeeeeeees e eeeeees e eeeseeeeeeseseseeeesesaeeeseseseeesseseseseeseseeeseesseeessenaeens 97
10.4.15 REAA AALA (OXGE).....eveeeeeeeeeeeeeeeeeeeeeeeseeeeeeees e eeesees e eeeeseeeeeeees s eeesesaeeeseseseeesseseseeeeseseeeseesseeeseenaeens 98
10.4.16 Create Value file (OXBF)c.ueiiieeeee ettt e ettt e e e e et e e e e e e e e e s atta e e e e e e e e ssnnstaaeeeeaaeeesannssenees 98
10.4.17 Gt VAlUE (OXT0) c.eeeeieiiieeiteeeitee ettt ettt ettt e et e sttt e sa e e ab e sabe e e st et e sabeesabeeesabeeenbeesabeeesabeeeanneenas 99
10.4.18 Credit file (OXT7L) ...veeeieeeiieeetee ettt ettt ettt et e et e sttt e st e e bt e e sabe e e sabeeesnbeesbeeesabeeennneeaas 99
10.4.19 Limited credit file (OXT72) ... 100
10.4.20 DEDIL filE (OXT73) ceeureeeeteeeiieesitee ettt et e sttt sit e ettt e sttt e sab e ettt e sabe e e sabe e e bbeesabe e e sabeeenb e e sbeeesareeeneeas 100
10.4.21 Create record file (OX74)coooeiiiiiiiiii 101
10.4.22 WIIte reCOId (OXT75) cooiiiiiiieieiieeeee e 101
10.4.23 REAd rECOIA (OXT76) c.coeeeeiiieieiieeeee e 102
10.4.24 Clear reCords (OXT77) ... 102
10.4.25 DEIELE il (OXT8) c..veeeiieeeiieeeiiee ettt ettt ettt ettt sttt et e e bt e s bt e st e e e bt e e sabe e e st e e e bt e e sbee e sabeeeneeas 103
10.4.26 Get free Memory (0X79) .o, 103
10.4.27 Format memory (OXT7A).....coco e, 104
10.4.28 Commit tranSaction (OX7B)cceiiiiiiiiiiiieeeiiiiiiiiiiee e e e et tteeeeeeeeeeearb e e eeeeseeeesbaaaeeeeesesssssaneeeseeenes 104
(OR B Aol oTo] ol {1 Y= Yot o Yo W (0) 7 @ FO U PRRRUUUPRR 105
10.4.30 Get file settings file (OX7D)..cccciiiiiiiiee e, 105
10.4.31 Set file SEttiNgS (OX7E).ccccii i, 106
10.5 ICODE (ISO15693) COMMANGSuutieiutiieriiieatieeeitee sttt e stteeebteesabeeesuteesabeeesabeeesabeeebeeesabeeesaseesabeeesbeeennseeaas 107
10.5.1 Inventory start (0X90)ccoeiiiiii e, 107
10.5.2 Inventory next (0X91) ...ccceei i, 107
10.5.3 Stay QUIET (0X92). ..o e 108
10.5.4 Read block (0X93) oo 108
10.5.5 Write bloCk (OX94) ..o 109
10.5.6 LoCK BIOCK (O0X95) ..ciiiiiieeeeeeee e 110
10.5.7 WIITE AFI (OX96) ...eeeeeeieeetieeeiee ettt e ettt e et te e st e e sateesabeeesabeesateesabeeesateeeseeesabeeeaaseeenseesnbeeesnseeeneens 110
0T8Tl 1 Y ol I (014 TP PPR 110
10.5.9 WEItE DSFID (0X98) v.veveeeeeeeeeeeeeeeeeeeeeeeeeeesese s seseeeesesesessssessseesesetesaseseseesesesessesseseseteeeseseseeeeseseseneens 111
10.5.10 LOCK DSFID (OX99) . veteeeeeeeeeeeeeeeeeeeeeeeeeeeee st seseeeeseseseseesesseseseseseeesasesaesesesessesseseseeeeesseseeneseseseneens 111
10.5.11 Get System Information (OX9A).......ccoi i 112
10.5.12 Get multiple BSS (OXOB)cceeieieeeeeeeeee 112

Eccel...."

Embedded RFID made simple

10.5.13 Password proteCt AFI (OXOC)euiieeeeeiiiiiiieeee e e e seitee et e e e e e sstirreeeeeaessssannaaaeeaeaesssnnsssaeneaaasssannnes 113
10.5.14 REAA EPC (OXID) ..uvvriieieeeeieiiitiiieeeeeeeeeeititte et e e e e e settbaaeseeaeesessnsatsaaseaaaesaaanssssassaaaessaaanssssaneeasesannnnes 113
10.5.15 Get NXP System INformation (OXIE).........uueeiieeiiiiiiiiiieiee e e e e ecciiree e e e e e e e eirre e e e e e e e e s snnnraaeeeaeeeennnns 114
10.5.16 Get random NUMDBET (OXIF)viiiieeieiiiiiiieee e e e e e eectrre e e e e e e e ettt e e e e e e e e eesntraaeeeeaessssasssseneaaaesssnnnes 114
10.5.17 Set PASSWOI (OXAD) ...ccceeieiiuiiiieeeeeeeeeiitirteeeeeeeesesttbrreeeeeeeseestatsasseeaaesssasssssssaeaessssassrsaseeasesannnnes 114
10.5.18 Write PasSWOIT (OXAL)cccuuiiiiiieeeeeeiiiitie ittt e e e e eeeitrreeeeeeeseeaabrseeeeeeeeessssssaaseaaaeessaanssssaaeeaeesaannnes 115
10.5.19 LOCK PASSWOI (OXA2) ..ceeeieiiiiiiieeeeeeeeeiiiiteeeeeeeeeeeettaeeeeeeeesesasarsaaeeaaassassnssssassaaaessssansssssaeeaessaananes 116
10.5.20 Protect PABE (OXA3B) ..eeeiieeieiiiiiiieiee e e e e ectirte et e e e e e e ettbareeeeeeesssaaatraaaeaaaeesaassraaaeaaaeeeaaassrbaaeaaeesaannnes 116
10.5.21 LOCk page ProteCtion (OXAZL)ceeeeeeeiieiiiieeeeeeeeeeeeirreeeeeeeeeeetrreeeeeeeeessetbsaaseaaeeeessanssssaseaaeeeesannes 117
10.5.22 Get multiple block protection status (OXAS)cccurrieiieeeeeiiciiriee e e e e e e eecrreeeeeeeeeererrrrraeeaeeeeeaanes 118
10.5.23 DESTIOY (OXAB) .. .uuvrreeeeeeeeeecitirieeeeeeeeeeeetreeeeeeeeseeatbrreeeeaeeeaaaabsaaaseaeessasassssaaseaaaeesaaasssssaeeasesaannnes 118
10.5.24 ENQDIE PriVACy (OXAT7) coeeeeieiiiieieee e e e e ettt e e e e e et e e e e e e e s e bbb b aeeeaeeeessanbaaaeeaaaeeessnssssaaeeaeeeeannnes 119
10.5.25 Enable 64-bit password (OXA8)ccceiiiiiiiiie e, 119
10.5.26 Read signature (OXA9)......cccc i, 119
10.5.27 Extended read BIOCK (OXB3)ccoiiiiiiiiiiiieiieeeeeee et e e ettt e e e e e e e e e et e e e e e e eeeaabaaeeeeaeeees 120
10.5.28 Extended Writ@ DIOCK (OXBA)cvvuuiieiieiiiiiiiiiiee e e ettt e e e e et e et e e e eeeeeeaabaeeeeeeeessssaaaeeeeasenes 121
10.5.29 Read config (OXAA) ..o 121
10.5.30 Write config (OXAB).....ccco i 122
10.5.31 Pick random ID (OXAC) c.eeuvuueeeeeiiiieeiiiieee et eeeeeettiee e e e e e e e e eateeeeeeeseeeabbaeeeeessesassaaaeeeeesessssnnaeeeseseees 122
10.5.32 ICODE custom command (15693) (OXBF)cuuuuueeieiiiiieiiiiieeeeeeeeeetiiieeeeeeeeeevarieeeeeeeseeessaneeeeasenns 123
10.6 OTA UPEIa0e .o, 123
10.6.1 OTADEGIN (OXFO) ...eeiiiiieiiieeetee ettt ettt et e ettt e sttt esab e e s et e e s bt e e sabee e ateesabeeesabeeeneeesbeeesabeeeneeas 123
10.6.2 OTAfirmware frame (OXFL)ccooeiiiiiii 124
10.6.3 OTAFINISH (OXF2) «.eeiieiiieeiie ettt ettt ettt et e s et e s bt e sabe e e st e e sttt e sabeeeneeesbeeesateeeneeas 124
11, ReVISION NISTOIY ...eeeeecccrrrrcsss s ss e s e s s e e s e e e s e s e s e a e s s s aaaaaaaaananssanannan 126

\\\ £)
Eccel.... %2

Embedded RFID made simple

1. Configuration — Web Interface

The reader has Wi-Fi functionality and can be configured through the Web Interface. The Pepper C1 can work in either
station mode or client mode. The default mode is station mode. The user can login using the web interface and set a
SSID and a password for their Wi-Fi network.

The Web Interface is divided into several sections: The Network configuration, RFID, Communication, Misc, Status,
Upgrade and Backup & Restore. All sections are described below.

1.1 Network Configuration
1.1.1 Wi-Fi Access Point mode

This is the default mode. In this mode, the reader works as a Wi-Fi access point. It’'s discoverable as a “Pepper_C1-
XXXXXX, where XXXXXX are the last three bytes of the unique MAC address, e.g. Pepper_C1-567801.
After connecting with this access point, the Web Interface will open automatically in the web browser. The Web
Interface is password protected. The default username is admin, and the default password is admin. The user can also
set the Access Point password. The default IP address, where the Web Interface is available is 192.168.100.1.

Pepper C1 Configuration

Network RFID Communication Misc Status Upgrade Backup & Restore

‘Wifl configuration
WiFi mode: Access point v
Auth. method: Open v
‘WiF1 protocol: 802.11bgn v
Channel: s
SSID: Pepper_C1-8F3EBD v
Password:
Network configuration

Address type: | Static IP v
IP: 192.168.100.1
Netmask: 255.255.255.0
Gateway: 192.168.100.1

DNS: | 192.168.100.1
‘Web interface

Username: admin

Password: sssse

| save & Restar‘t:\

Figure 1. Web Interface in the Wi-Fi Access Point mode

D
Eccel.... -

Embedded RFID made simple

1.1.2 Wi-Fi Client mode

The reader can be connected to the user’s local Wi-Fi network and get the local IP address. The Wi-Fi mode should be
changed to “client” and the Wi-Fi credentials should be provided. The reader IP address can be set to “Static” or “Auto
(DHCP)”. The assigned IP address will be visible in the console logs (UART2 by default):

£P COM2 - PuTTY - O %

Figure 2. Console logs (UART2 by default)

Pepper C1 Configuration

Network RFID Communication Misc Status Upgrade Backup & Restore

Wifi configuration
WiF1 mode: Client v
SSID: WLAN1-661MEAL v

Password: | essssssssssssses
Network configuration
Address type: | Auto (DHCP Client) v

‘Web interface

Enable web interface only in the
AP/rescue mode (save RAM
memory for other services)

Username: admin

Password: ssess

Save & Restart

Figure 3. Web Interface in the Wi-Fi Client mode with Auto (DHCP) address type.

8

D
Eccel.... %

Embedded RFID made simple
Pepper C1 Configuration

Network RFID Communication Misc Status Upgrade Backup & Restore

'Wifl configuration
WiFi mode: Client ™
SSID: WLAN1-661MEAL v

Password: sesecsssssscsnss

Network configuration

Address type: Static IP v
IP: 192.168.8.201
Netmask: 255.255.255.0
Gateway: 192.168.8.1

DNS: 8.8.8.8

‘Web interface

Enable web interface only in the
AP/rescue mode (save RAM
memory for other services) [}

Username: admin

Password: sssss

| save & Restart |
Figure 4. Web Interface in the Wi-Fi Client mode with Static IP address type
1.1.3 Disabling wireless communication

The user can disable Wi-Fi by setting Wi-Fi mode to off. The wireless communication will remain off after repower. To
enable Wi-Fi the user should send a specific command over binary protocol of reset the device to defaults.

Pepper C1 Configuration

MNetwork RFID Communication Misc Status Upgrade Backup & Restore

Wifi configuration
WiFimode: Off v

| Save & Restart |

Figure 5. Disabling Wi-Fi in the Web Interface

Eccel... “:

Embedded RFID made simple

1.2 RFID

In this tab the user can change configuration for the default RFID behavior. This tab has three subcategories relating
to RFID functionality and built in polling options:

e Polling
e Known UIDs
o Key storage

Network RFID Communication Misc Status Upgrade Backup & Restore

Polling Known UlDs Key storage

Figure 6 Configuration tabs for RFID
More information about this functionality is provided in the Polling mode section in this document.

1.3 Communication interfaces

1.3.1 General configuration

On this tab we can configure general options for the device.

e IMIDNS service — when this option is enabled this option device will announce its own name over this service.
You can also query for _peppercl._tcp.local to search all devices in the network. This option is enabled by
default.

e UDP discovery — this is our custom UDP broadcast service listening on port 63311. To search for a devices in
the network host have to send string “P_C1:SCAN” as broadcast message to the network and all devices should
send response in format P_C1:<device name>:<version>. eg: P_C1:Pepper_C1-1A64D4:2.0

e Device name — this name will be used in all services, included in JSON frames etc.

e Protocol password — this is optional password needed for wireless connections like TCP client/server and
WPAN service.

1.3.2 UART configuration

On this configuration tab the user can select what will be provided on the UARTSs available on the Pepper C1. Two
UARTSs are available

e UARTO/USB - this UART port is accessible over USB connection for boards with USB port, or on the J4 port if
boards don’t have USB port.
e UART2 - this UART port is available on the J1 port

10

On these ports we can select different protocols:

e Binary protocol — this is the standard protocol described in section 8.

e Console logs — with this option selected the reader sends internal logs to the user.

e Modbus/ RS485 binary — this protocol is only available on the UART2 port, this should be used on the boards
with a RS485 converter.

o UART Passthru — this option should be enabled if you want to use other external devices over this UART port

o Disabled - UART pins can be used as GPIO

1.3.3 TCP Client/Server

These services provide communication using TCP connection. The user can configure a port for this service, timeout
and server address for TCP Client. If the timeout value is set, the host must send any frame (e.g. dummy command)
before the timeout expires to keep the connection alive. From firmware version 2.35 onwards, if the device is
configured in the polling settings to send asynchronous packets in JSON format then the host can send ping messages
to the device in the JSON format also:

{"type":"ping"}
The device should answer with:

{"type":"pong"}
1.3.4 2.4GHz wireless communication (WPAN)

Three options are available for WPAN communication:

e WPAN SPP - Serial Port Profile

e WPAN Low energy service — this is a custom WPAN Low Energy service. More details about this profile can be
found in the WPAN Interface section in this document

e WPAN LE HID — this profile can be used to emulate a WPAN LE HID keyboard

WARNING!
WPAN services use a lot of module memory, so in some cases WPAN service is not enabled at startup. The reader waits
one minute at startup and if no activity is detected on the Web Interface, then the web service is disabled to release
memory needed for the WPAN service. During this period, the module blinks blue every 3 seconds.

1.3.5 MQTT

The device has a built in MQTT client and this tab is used to configure parameters needed for this communication.
When the MQTT service is enabled and the built in polling is enabled, JSON frames with basic information about the
tag is sent to the MQTT server. Please read MQTT interface description for more information about this interface and
frame format.

11

Eccel....

Embedded RFID made simple

General UART TCP Server TCP Client

WPAN MQTT client REST API Web socket

MQTT client configuration
Please provide information needed to login to your MQTT server
UID and tag type will be transmitted i JSON format to the topic provided below.

MOQTT service enabled

Server address: example server com
Port: | 1883

Enable secure (SSL/TLS)
connection [

User name: user
Password: | ssessses
Output topic: out_topic

Input topic: | in_topic

Figure 7 Web Interface - the MQTT client configuration tab.

The picture below shows an example of a JSON frame received in a Node-RED system.

6.03.2019. 14:48:07 node: d2268185.d7564

fid_out : m=g.payload : Object

"EBBETEDD"

string: "MIFARE Plus 2K"

L MQTT from C1
[

nnected known_tag: false

Figure 8 Node-Red — the MQTT client + JSON frame example

1.3.6 REST APl interface

The device can also send frames in JSON format over REST API using the POST method. The user has to setup URL and
authorization details if needed. This service also needs to have built in polling mode enabled. HTTPS protocol is also
available but not recommended because of device performance. If it is used it is recommended to setup polling delay
when the tag is detected.

12

Eccel.... %

Embedded RFID made simple

General UART TCP Server TCP Client

WPAN MQTT client REST API Web socket

REST API configuration
Service enabled
URL: https:/fhttpbin.org/post

Auth type: | Basic v

User name: | test

Password: [—]

| Save & Restart |
Figure 1-7 REST API configuration tab

1.3.7 Web sockets

In a similar way to the MQTT protocol, the device can send JSON messages over Web Sockets. If this service is enabled
and built in polling is enabled, JSON frames can be handled using a Web socket with address
ws://<device ip address>/<web socket name> eg. ws://172.16.16.62/wscomm.cgi.

Comm. interface MQTT Web socket

Web Socket configuration
Ws service enabled ¥
Ws URL: wscomm.cgi
Save & Restart
Figure 9 Web Interface — the Web socket configuration

1.4 Miscellaneous options

On this page, the user can set up the internal logs and sleep mode (details in Chapter 6). Logs are the same as displayed
on the console by default forwarded on the UART2. But if the user doesn’t have access to the UART2 header or it is
complicated to connect any device to capture the logs internal memory of the device can be used as a buffer for the

13

> ¢
Eccel.... %

Embedded RFID made simple

logs. The device is able to collect 6 files (numbers 0 to 5) and each of these files is maximally 10kb long. The new file is
created on each restart with the name Log_0.txt but previous files are shifted and the oldest one is deleted. If the size
of the current log is greater than 10kb the device creates the new file and deletes the oldest one.

twork RFID Communication Misc Status Upgrade Backup & Restore

Internal logs

Logs Enabled
SNTP Enabled

Utc offset 2

Hint: Ser “No TAG in field" option to 0 fo disable the deep sleep mode.

To get proper timestamps in the log files enable please enable SNTP service and set proper UTC offset

Enter sleep mode when:

No TAG in field in (seconds): 0
TAG is detected [

| save & Restart |
Hint: Set "No TAG in field" option to 0 to disable the deep sleep mode.

To activate sleep mode please put the jumper between GPIOS and GPIO33 on the JI header.

List of the fails are available on the Status page.

unication Misc Status Upgrade Backup & Restare

Device status
[Clear page |
Put the tag close to the antenna to read UID
Free memory for running services: 47 kbytes
Firmware version: 2.35 Oct 16 2023 10:08:06 (HW:C1, PN: 3.5), (build:1732)
==> Logs file list. Log_0.txt is the current one <==

=== Recommended way to view these files is new tab <==

[
m
=]
2t

‘.

[
m
21

[
m
(=]
21

[
(=]
=]
(F¥)
A

k'
[}
1=
7

|

[
i
v
7

The recommended way to view the files is to open the file in a new tab and refresh the content if needed (F5 or Ctrl+F5
for most browsers).

14

N
Ecceme;ﬁ/

Embedded RFID made simple No. GB2005225.

To make the log files easier to analyze user can enable SNTP — network time protocol client and set up the correct time
zone. Then all lines in the logs come with an extra timestamp header.

1.5 Status

This page provides information about the current firmware version, and basic information about the TAGs in range of
the antenna. Keep in mind that built in polling must be enabled to get information from the tags. The clear page
button will clear all readings. On status page you can also check information about memory available in the reader.

Communication Misc Status Upgrade Backup & Restore

Device status

Put the tag close to the antenna to read UID
Card nr 0 - ICODE SLI. brand: NXP Semiconductors, DSFID: (. UID: E0040100206D35BF
Card nr 0 - ICODE SLI. brand: NXP Semiconductors, DSFID: 0. UID: E0040100206D35BF
Card nr 0 - ICODE SLI. brand: NXP Semiconductors, DSFID: 0. UID: E0040100206D35BF
Free memory for running services: 44 kbytes

Firmware version: 2.35 Aug 1 2023 09:55:50 (HW:C1, PN: 3.5), (bwmld:1616)

Figure 10 Web Interface — the Status page

1.6 Firmware upgrade

In the Upgrade tab, the user is able to upgrade the reader firmware. There are two options: select the binary file to
upload, or make an OTA Upgrade (Over The Air), which is a powerful feature of the Pepper C1. By clicking the OTA
Upgrade button, the firmware file will be downloaded directly from our website www.eccel.co.uk to the reader flash
memory and a firmware update will be performed. Each time the user visits the Upgrade tab, they will see information
about the availability of the latest firmware version.

Firmware upgrade
Please select firmware file

Choose File No file chosen Upgrade

23

New version 2.1 is available! Click button below to perform oniine update.

OTA Upgrade

Figure 11 Web Interface — the Firmware upgrade tab

15

http://www.eccel.co.uk/

il)

NI)
Eccel.... @

150 9001
Embedded RFID made simple Gectificate No. GB2005225

1.7 Backup & Restore

In this tab the user can backup settings to the JSON file. This is a human readable format and therefore can be modified
by the user. The backup file can be uploaded to any device with firmware higher than 2.0. and overwrites current
settings in the device.

Configuration backup

To save the current configuration to a file click the button below

Configuration restore

Select the configuration file to restore:

Wybierz plik | config.json

Figure 1-10 Backup & Restore tab

16

Eccel... “:

Embedded RFID made simple

2. Rescue mode and factory reset

If the user forgets the password to the module or if the settings for the Wi-Fi need to be updated, the Pepper C1 device
provides two modes to resolve this situation: the rescue mode and factory defaults reset.

2.1 Rescue mode

This mode is dedicated specifically to update Wi-Fi connection settings or to access the web interface when the Wi-Fi
is disabled. To enable this mode please follow this steps:

e Power up device.

e Press the button and hold it for about 5 seconds (for the C1 module please connect GPIOO to the GND pin) —
device blinks red every 1 second, release the button when device blinks white. Do not hold the button longer
if you don’t want to perform the full factory reset.

e The device should be available as an Access Point with the name Pepper_C1-xxxxxx (or Pepper_C1-MUX-
xxxxxx). If the user has already provided a password for Wi-Fi connection, then this password needs to be
entered in order to access the device. If a password has not yet been inputted by the user, then the device will
be open and will not require any password for access.

2.2 Automatic rescue mode

From firmware version 1.5 onwards, the Pepper C1 family is able to detect some faulty configurations and software
problems automatically. If the device is not able to run for more than 15 seconds with the selected settings and keeps
restarting, it runs in safe mode with all services turned off with only Wi-Fi and web interface running (if enabled in the
configuration - if not the user can enable it by holding the button for three seconds.). The user will be informed about
this situation by a message in the browser when the web interface is launched.

2.3 Resetting module to factory defaults

If the user wants to erase all settings stored in the device to factory defaults including Wi-Fi settings, communication
settings and known UIDs, then the steps below need to be followed:

e Power up the device

e Press the button and hold it for about 10 seconds (for the C1 module please connect GPIOO0 to the GND pin)
e Release the button when the device blinks green (for the C1 module disconnect GPIOO from the GND pin)

e The device should reboot itself and should be available for the user with default settings

17

N
Eccel....

Embedded RFID made simple Certificate No. GB2005225

3. Sleep mode

The device is able to enter into sleep mode to reduce current consumption. This mode should be configured in the
Web Interface on the Misc tab.

Network RFID Communication Misc Status Upgrade Backup & Restore

Sleep mode configuration

Use light sleep
Hint: When light sleep mode is used device is using more current, but wake up time is about 30ms instead of 400ms in normal sleep mode.
GET_TAG_COUNT on wake up
If GET_TAG_COUNT command is enabled ASYNC frame with tag count is sent to the host on each wake up from light sleep mode.
Enter sleep mode when:
No TAG in field in (seconds): 0
TAG is detected [
Wake up triggers:

Use RFID LPCD as wakeup
LPCD polling timeout: 500
Seconds to wake up: 0
Wake up trigger #1: Disabled v

Wake up trigger #2: Disabled v
| Save & Restart |

Since firmware 2.54, the device supports two sleep modes: Deep Sleep and Light Sleep. The Deep Sleep offers higher
energy savings, however the wake-up time is approximately 400ms. In contrast, the Light Sleep mode consumes
around 700uA more current, but significantly reduces the boot time to 50ms.

In Light Sleep mode, users can also take advantage of the Low Power Card Detection (LPCD) function. This feature,
integrated into the RFID chip, enables tag detection while the reader’s MCU remains in Light Sleep mode. Users can
additionally configure how frequently the chip polls the antenna to check for tags.

The device can enter Sleep mode in the following ways:

e No TAG in the field for X seconds — the device will enter into sleep mode after this defined time.
e TAG is detected — the device will enter into sleep mode immediately upon detecting a TAG in the field.
e The ‘Sleep’ command is received over a communication interface (this method does not require a jumper)

18

Eccel....

N

9001
Embedded RFID made simple Cerificate No. GB200S225

Important notice!

To enable Sleep mode, place a jumper the J1 header between pins specified in the Web Interface. In some sleep mode
configurations, the reader may enter sleep so quickly that it becomes impossible to access the Web Interface within
the available time. In such cases, the jumper must be removed to prevent the device from entering Sleep mode.

Please note that Sleep mode is not supported on the Pepper C1 MUX hardware.

All of the methods listed above can be used simultaneously. For example, the device may enter Sleep mode
immediately after detecting a tag, or after the predefined timeout period.

The device can exit Sleep mode in the following ways:

LPCD polling — when an object (a TAG or some metal object) is detected in the antenna field,

Timeout expiration — after the defined time period has elapsed,

UART2 activity — when a byte is received on the UART2 RX port. Note that this byte will be ignored, and a
delay of at least 500 ms (after Deep Sleep) and 150 ms (after Light Sleep) is required before sending any valid
command through the UART interface. The best way is just to send the Dummy Command every 10 ms or so
and wait for the answer from the reader,

Button press — by pressing the built-in button,

GPIO control — by configuring GP104 or GPI0O2 (available on the J1 header) to change state (LOW/HIGH). The
GPIO assignment depends on the hardware version.

19

D A
Eccel... %%

Embedded RFID made simple

4. JSON interface for MQTT and WebSocket protocols

When MQTT client or WebSocket interface is configured in the web configurator and it is connected to the server the
Pepper C1 can send and receive frames in JSON format as described below.

4.1 Status frame

This frame is sent by the device to the server about the current status of the device. Currently it is only one frame with
status startup.

Example:
{
"type": "startup",
"device_name": "Pepper_Cl-1A64D5"
3

4.2 RFID frame

When RFID polling is enabled, the device sends information about the currently detected TAG.

Example:
{
"type": llu_idll’
"uid": "D89A7424",
"sak": 8,
"string": "MIFARE Classic 1k/Plus 2k",
"device_name": "Pepper_Cl-1A64D5",
"memory" : "00112233445566770011223344556677",
"known_tag": false
3

4.3 UART passthru frame

When passthru mode for UART2 is active, the device sends data received from the UART port to the server using frame
with type set to “uart”. This method of communication can be used to transmit only text frames. If the host wants to
use binary over UART2, then binary communication protocol should be used instead.

Example:

{
"type": ”uar‘t”,
"device_name": "Pepper_Cl-1A64D5",
"msg": "Hello world!!!"

}

20

Eccel.... %

Embedded RFID made simple

4.4 Event frame

This frame can be used by the host to send requests to the device. Using a different event type, the host can request
the GPIO state, toggle the GPIO pin, or send text data to the UART2 interface. If field device_name is defined then it is
used to verify if it is the same as defined for this device and frame is ignored if it is not equal.

4.4.1 Set GPIO high/low

This frame requests the state on the GPIO pin (similar to CMD_GPIO). The host is limited to use only GPIO numbers
4,5,16,17 and 25,27 if UART2 is disabled.

Example:

{
"event": "high",
"gpio": 4

ks

4.4.2 Toggle GPIO high/low

This frame requests the toggle state on the GPIO pin (similar to CMD_GPIO) for a time specified in the field “time”.
The host is limited to use only GPIO numbers 4,5,16,17 and 25,27 if UART2 is disabled.

Example:

{
"event": "toggle_low",
"gpio": 4,
"time": 250

}

4.4.3 UART passthru event

This frame forwards a text message from the “msg” field to the UART2. This frame is similar to toggle state on the GPIO
pin (similar to CMD_GPIO) for a time specified in the field “time”.

Example:

{
"event": "uart",
"msg": "I’'m here"

4.4.4 LEDevent

This frame can be used to set or toggle custom colour on the built-in RGB LED. If the field time is defined then the
device sets LED colour to defined by r,g,b parameters and then turn it of after number of milliseconds defined by time
parameter.

Example (set RED colour on LED for one second):

21

5
\ e <Dy
N)) g !
E C C e ' ‘.: “ £
Technology Ltd
Certificate Gl

Embedded RFID made simple

{
"event": "Ted",
"r": 255,
llgll: O’
llbll: O’
"time": 1000
}

4.4.5 Readtagcommand

This frame can be used to read Mifare Classic, Ultralight (NTag), and ICODE tags. For Mifare Classic tags user can specify
key number and key type to pass Mifare authorization.

Example:
{
"event":"read",
"count":1,
"address":2,
llkey_typell : IIAII ,
"key_no":0
3
Answer from the device:
{
"type" : llackll ,
"event":"read",
"data":711223344556677889900112233445566”,
"device_name" :”Pepper_Cl-AABBCC”
3

4.4.6 Write tag command

This frame can be used to write Mifare Classic, Ultralight (NTag), and ICODE tags. For Mifare Classic tags user can
specify key number and key type to pass Mifare authorization.

Example:

{
"event":"write",
"count":1,
"address":2,
ery_typell : llAll ,
"key_no":0,
"data'":711223344556677889900112233445566”

}
Answer from the device:

lltypell:llackll’
"event":"write",
"device_name" :”Pepper_Cl-AABBCC”

}

22

5. Communication interface — binary interface

5.1 Overview

The Pepper C1 can be controlled using a simple binary protocol available over USB, UARTO or UART2 (using the built in
USB-TTL converter) or a TCP IP socket. This binary protocol was designed to be as simple as possible to implement on
the host side whilst still providing robust communication.

The default configuration provides communication over USB with the following parameters:

e Baud rate: 115200bps
e Data: 8 bit

e Parity: None

e Stop bits: 1 bit

e Flow Control: none

The baud rate can be changed in the Web Interface from 9600 up to 921600. The same settings can be applied when
communication is switched to UART2.

When communication is set to TCP, the device’s built in internet protocol socket module acts as a TCP server and
listens for connection by default on port 1234. Only one active TCP connection is allowed to the module. The module
has a built in 15 second timeout for connection, so if the host doesn’t send any frame for this period, the connection
will be closed on the server side. To avoid this, the user should send any frame to the module (e.g.
DUMMY_COMMAND).

5.2 Frame structure

Communication with the module is symmetric so frames sent to, and received from the module are coded in the same
way. All frames contain fields as described in the table below.

Cominelne [See Command length
Frame STX length + 2bytes & Command body CRC16
XOR
CRC
1 byte 2-bytes 2-bytes 1-byte n-bytes 2-bytes
Commandbody |y o\ itk ot
length, LSB, Command Command body
OxF5 . of command Command
maximum value parameters CRC, LSB
1024 length bytes

23

P »
N S
N
A
C C e £
Technolegy Ltd :
Certificate

Embedded RFID made simple

5.3 CRC calculation

CRC is a 16-bit CRC-CCITT with a polynomial equal to 0x1021. The initial value is set to OxFFFF, the input data and the
output CRC is not negated. In addition, no XOR is performed on the output value. Example C code is shown below.

static const uintl6_t CCITTCRCTable [256] = {

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5,
0x60c6, 0x70e7, 0x8108, 0x9129, Oxalda, Oxblé6b,
Oxcl8c, Oxdlad, Oxelce, Oxflef, 0x1231, 0x0210,
0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, O0xa35a, Oxd3bd, 0Oxc39c,
0xf3ff, Oxe3de, 0x2462, 0x3443, 0x0420, 0x1401,
0x64e6, 0x74c7, 0x44a4, 0x5485, Oxa56a, Oxb54b,
0x8528, 0x9509, OxeS5ee, Oxf5cf, Oxc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, Ox66f6,
0x5695, 0x46b4, Oxb75b, Oxa77a, 0x9719, 0x8738,
Oxf7df, Oxe7fe, 0xd79d, Oxc7bc, 0x48c4, 0x58e5,
0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, Oxd9ed, 0xe98e, O0xf9af, 0x8948, 0x9969,
0xa90a, 0xb92b, Ox5af5, Ox4ad4, O0x7ab7, 0x6a96,
Oxla71, O0x0a50, 0Ox3a33, 0x2al2, Oxdbfd, Oxcbdc,
Oxfbbf, Oxeb9e, 0x9b79, 0x8b58, Oxbb3b, Oxabla,
Oxbcab, 0x7c87, Ox4ce4, Ox5cc5, 0x2c22, 0x3c03,
0x0c60, Oxlc4l, Oxedae, Oxfd8f, Oxcdec, Oxddcd,
Oxad2a, OxbdOb, 0x8d68, 0x9d49, 0x7e97, 0x6ebb,
Ox5ed5, Ox4ef4, 0x3el3, 0x2e32, Oxle51, 0x0e70,
Oxff9f, Oxefbe, Oxdfdd, Oxcffc, Oxbflb, Oxaf3a,
0x9f59, 0x8f78, 0x9188, 0x81la9, Oxblca, Oxaleb,
0xd10c, Oxcl2d, Oxflde, Oxel6f, 0x1080, 0x00al,
0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, Oxa3fb, Oxb3da, Oxc33d, Oxd3lc,
Oxe37f, Oxf35e, 0x02bl, 0x1290, 0x22f3, 0x32d2,
0x4235, 0x5214, 0x6277, 0x7256, Oxb5ea, Oxa5ch,

24

P »
N S
N
A
C C e £
Technolegy Ltd :
Certificate

Embedded RFID made simple

0x95a8, 0x8589, Oxf56e, 0Oxe54f, 0xd52c, Oxc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447,
0x5424, 0x4405, OxaZ7db, Oxb7fa, 0x8799, 0x97b8,
Oxe75f, Oxf77e, Oxc71ld, 0xd73c, 0x26d3, 0x36f2,
0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9,
0xb98a, 0Oxa9ab, 0x5844, 0x4865, 0x7806, 0x6827,
0x18c0, 0x08el, 0x3882, 0x28a3, Oxcb7d, Oxdb5c,
Oxeb3f, Oxfble, 0x8bf9, 0x9bd8, Oxabbb, Oxbb9a,
0Ox4a75, 0x5a54, 0x6a37, 0x7al6, OxOafl, OxladoO,
0x2ab3, 0x3a92, Oxfd2e, Oxed0f, Oxdd6c, Oxcd4d,
Oxbdaa, Oxad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07,
0x5c64, 0x4c45, Ox3ca2, 0x2c83, OxlceO, 0x0Occl,
Oxeflf, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba,
0x8fd9, 0x9ff8, Ox6el7, 0x7e36, O0x4e55, 0x5e74,
0x2e93, 0x3eb2, O0xOedl, OxlefO };

static uintl6_t GetCCITTCRC(const uint8_t* Data, uint32_t Size) {
uintl6_t CRC;

uintlé_t Temp;

uint32_t Index;

if (Size == 0) {

return 0;

3

CRC = OXFFFF;

for (Index = 0; Index < Size; Index++){

Temp = (uintl6e_t)((CRC >> 8) A Data[Index]) & OxOOFF;
CRC = CCITTCRCTable[Temp] A (CRC << 8);

}

return CRC;

}

25

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

5.4 Pepper C1 Client — PC application

Eccel provides the Pepper C1 Client — the PC application written in QT (source code available) to easily test all
commands with the Pepper C1 reader over the binary protocol.

The C1 Client can be downloaded here:
https://eccel.co.uk/wp-content/downloads/Pepper C1/Cl-client.zip

€} C1-Client - v122 - b X
\ Serial connection MNetwork connection
\ ‘ [rs485 binary protocol

E c C el Go to website Select port: |1\, \COM2 R | 115200 v | | Discomnect [-
Get C1 user manual)

Command list Favourites Metwork Poliing Command parameters

Execute selected command >

Select command
[01] Dummy command -
[02] Get tag count
[03] Get UID
[04] Activate TAG Protocol logs
[05] HALT 08:15:44.329 - Network search engine is running in the background, new devices will be automatically
[D6] Set polling detected.
[07] Set key 08:1 .910 - Pepper_C1-9010C8 found at address 192.168.100.1. Version: 2.51
[08] Save keys 05:] .987: [TX] - Get firmware version
- : F5 03 00 FC FF OB
[09] Network config 08:3 .009: [RX] - Get firmware wersion - ACK
[0A] Reboot _ : F5 36 00 CQ_EF 00 0B 32 2 5 2E 39 20 32 30 32 34 20 31 30 3A 31
[0OB] Get firmware version = B 48 57 3A 43 31

.010: [TX] - CMD_LOG
: F5 04 00 FB FF E4 01

[0C] UART2 passthru
[0D] Sleep command
[OE] GPIO command

[OF] Select antenna A
£ >

Command filter
Generic commands
Mifare Classic
Mifare Ultralight
Mifare Desfire

Device logs:

ICode
Show legend Clear logs
Flash firmware Restart device
Download config Upload config
RFID configuration
Connected Version:2.51.2119 Jul 92024 10:17:16 (HW:C1 w2, PN: 4.0)

Figure 12. C1 Client

26

https://eccel.co.uk/wp-content/downloads/Pepper_C1/C1-client.zip

Eccel... “:

Embedded RFID made simple

6. WPAN interface

6.1 WPAN Serial Port Profile

The Pepper C1 is able to work over WPAN using Serial Port Profile. This protocol has been available since firmware
version 1.3. However in version firmware version 1.4 onwards we have changed how SPP is enabled. From firmware
version 1.4 onwards, this protocol can be enabled only in the web interface on the communication tab.

The default PIN is ‘0000’. The communication protocol, frame format, and commands are exactly the same as for the
other communication interfaces. Wi-Fi interface is no not accessible in this mode.

6.2 WPAN Low Energy GATT service

From firmware version 1.4 onwards, the Pepper C1 also supports the WPAN Low Energy standard over GATT services.
For this purpose, a special custom service is available with two characteristics, one for write and one for read with
notification when new data is available.

e Service: f03c26bl-3fb1-4d67-912e-4ae31159aef0
e Write characteristics: f03c26b2-3fb1-4d67-912e-4ae31159%aef0
e Read characteristics: f03c26b3-3fb1-4d67-912e-4ae31159%aef0

This communication method can be enabled in the web interface or temporarily in order to configure the device using
the dedicated ‘Pepper C1 configurator’ application available in the Google Play store or in the Apple App Store. To
enable this mode without web interface, the user can press the built-in button three time quickly and then the device
will switch temporarily to this mode until there is a power cycle. This temporary mode is confirmed by one blue blink
on the built-in LED. Because of the slow speed, this is not a recommended method to upgrade the firmware.

To enable Wi-Fi mode please hold built-in button for 3 seconds.

6.2.1 WPAN Low Energy GATT as an additional interface

If an application needs to combine the WPAN LE feature with other communication methods like UART or TCP
communication, then the user can set up the reader to use WPAN LE interface at the same time when other services
are running. But because of memory limits, some features may not be available at the same time. To make it possible,
the web interface is shut down 1 minute after boot up if it is not used within this time. After the first minute and after
the web interface is disabled, the WPAN service becomes available. The device will blink blue every 3 seconds to show
that the WPAN LE service is waiting for the web interface to become disabled.

6.3 WPAN LE HID profile

From firmware version 1.4 onwards, the Pepper C1 also provides WPAN Low Energy HID support. Thanks to this profile,
the user can pair the Pepper C1 to a PC or smartphone like one would a normal keyboard and, if polling mode is
enabled, the reader will send a key sequence corresponding to the UID (unique serial number) read from the TAG. On

27

N £
Eccel.... %

Embedded RFID made simple

the configuration page, the user can also enable an extra ENTER key after each UID sent to the host to separate a string
of UID reads to make it more legible.

To enable Wi-Fi mode please hold the built-in button for at least 3 seconds.

6.4 WPAN bridge extension

From firmware version 2.36 onwards, the Pepper C1 supports a new functionality called WPAN bridge extension.
Thanks to this extension the user can send/receive RAW data to the devices connected to BT SPP or WPAN LE
interface.

Communication Misc Status Upgrade Backup & Restore

General UART TCP Server TCP Client

WPAN MQTT client REST API Web socket

Please select WPAN configuration

Select: | WPAN SPP v|

PIN: | 0000

Enable WPAN bridge extension [

More informations about this feature in the C1 manual

WPAN bridge extension option in web interface

When this mode is enabled, the device does not parse the frames transmitted over the WPAN interface using binary
protocol, but all frames are transmitted from the WPAN interface to the binary interface used in the device and this
can be UART or TCP. See the diagram.

WPAN LE or

WPAN SPP
interface raw data

When the host software wants to transmit any data to the WPAN device connected to C1 WPAN interface then it needs
to send a WPAN data frame (0x15) with requested data. In the opposite direction, if the external application connected
to the WPAN interface sends anything to the device, the data will be received as an ASYNC frame on the binary
interface.

28

D
Eccel.... %

Embedded RFID made simple

7. RS-485 Communication

From firmware version 1.4 onwards, two new protocols are available dedicated specially for RS-485 connection:
Modbus RTU and Extended binary protocol. Both are available only on the Pepper Wireless C1 RS-485 hardware.

7.1 Modbus RTU

Figure 13 RS-485 pinout

GND

5Vinput
TXD+/Y
TXD-/Z
RXD-/ B

RXD+/A

If this communication is selected in the web interface, the device can be connected to a Modbus network as a slave
device with an address that is also configured in the web interface. Because Modbus communication API is different
to the default Pepper C1 protocol, special registers and commands are used to communicate with the reader. But the
command and response format is exactly the same as described in the protocol description of this manual.

Response from the reader

Function Command Address range
Request to the reader Write Holding register (0x10) 0-127
0-127

Read Input register (0x04)

0 —response length
1-n —response bytes

version, from firmware version 1.7)

128 - 139
Get polling UID Read Input Register (0x04) 128 - UID len
129-139-UID
Antenna idx (only for multiplexer Read Input Register (0x04) 138

The Write Holding Register (0x10) is used to write a command to the device. For example, if the host wants to write
the command GET_UID, (one byte 0x02) then they must execute the command Write Holding Register to address 0x00,
value 0x02 with length 1. The device sends a confirmation indicating the success or otherwise of the write operation.

29

DN
Eccel.... -

s 50501
Embedded RFID made simple Centificate No. GB2005225

Then the host system should Read Input Register (command 0x04) at address 0x00 to get the length of the response
and then read the response from address 0x01. If the length value is 0, then the response is not yet ready.

The Holding and input registers are 16-bit registers words, but every register stores only one byte from the command
and response.

To optimize communication, one special register is created at address 128. It is a 9-bytes long register containing
current length + UID of the TAG placed within range of the reader’s antenna when internal polling is enabled. So, if
the host application wants just to read the RFID tag UID, then this register should be checked to get valid values.

Example below demonstrate scenario described above including all bytes included in the Modbus protocol.

HOST => Write Holding Register, command GET_UID 0x02:
0x01 — Slave address
0x10 — Write Holding Register command
0x00 0x00 — Write address
0x00 0x01 — quantity of registers (every register is 16bits long)
0x02 — bytes count
0x00 0x02 - data to write — GET UID command
0x27 0x91 - Modbus CRC

READER => Write Holding Register confirmation
0x01 - slave address
0x10 - Write Holding Register command
0x00 0x00 - Write address
0x00 0x01 - quantity of registers (every register is 16bits long)
0x01 0xC9 - Modbus CRC

HOST=> Read Input Register (reading response length + response body in one read)
0x01 - slave address
0x04 - Read Input Registers command
0x00 0x00 — Start Address
0x00 0x04 - quantity of registers (every register is 16bits long)
OxF1 0xC9 - Modbus CRC

READER=> Response length + body

0x01 - slave address

0x04 - Read Input Registers command

0x08 - 8 bytes response (4 registers, 16bits each)

0x00 0x03 - reader response length

0x00 0x00 0x00 0x02 0x00 0x01 - three bytes of response stored in 16bits registers
0x00 0x00 - ACK
0x00 0x02 - GET_UID response
0x00 0x01 - 1 tag found

0x77 0x0D - Modbus CRC

30

7.2 Binary protocol over RS-485

Because in some cases the binary protocol can be more convenient to use since firmware v1.4 device supports binary
protocol extended with address byte. Thanks to this the host can use normal binary protocol but keep the addressing
option like in the Modbus protocol. The address of the device is the first byte in the command body.

The length of the command is the sum of the Address byte + Command body + 2 bytes CRC. See table below.

Command Command
Frame STX e length XOR Address byte + Command body CRC16
1-byte 2-bytes 2-bytes 1-byte 1-byte n-bytes 2-bytes
Command XOR with
oEEly G, Oxffff Command Address + Command
LSB
OxF> S ’ of command Address byte | Command parameters body CRC, LSB
maximum length bytes
value 1024 g

31

N ¢
Eccel.... %

Embedded RFID made simple

8. Key storage

To perform some operations on TAGs authority keys maybe required. The user can set these keys using the SET_KEY
command anytime this is required. However it is also possible store up to 5 keys in non-volatile memory and the
module will then load these keys after bootup.

Storing keys in memory can be done in two ways: In the HTTP interface on the RFID tab and by using commands.

In the latter scenario, the command SET_KEY needs to be executed to save a KEY in volatile memory temporarily and
then execute the SAVE_KEYS command to save these keys to non-volatile memory. Please refer to these commands
for full details.

The key storage can be also managed in the web interface under RFID->Key storage tab.

Key storage

Kev 0 type: MIFARE v

Key 0: FFFFFFFFFFFFFFFFFFFFFFF

Kev 1 type: MIFARE v

Key 1: 000000000000111111111111

Key 2 type: DES v

Key 2: 0000000000000000000000000

Kev 3type: AES128 v

Key 3: 0000000000000000000000000¢

Kev 4 type: | AES128 v

Key 4: 00112233445566778899A4BB(

Save & Restart

Figure 14 Web Interface — Key storage TAB

32

\\\ g
Eccel.... %

Embedded RFID made simple

9. Polling mode

In this mode the Pepper C1 device executes the continuous repeated enumerate tags UID command. Depending upon
the polling settings in the web interface, the module can execute some actions as described below. Because the
module has built in memory, the user can store known UIDs, and polling mode can trigger different actions depending
upon whether the UID is stored in the memory or not. (Whitelist)

This mode needs to also be activated in order to send frames using the MQTT client and to the WebSocket interface.
These modes are enabled in the Web Interface.

9.1 Web configuration for polling mode

All feature related with polling can be configured in Web Interface under RFID->Polling tab.

Polling Known UlDs Key storage

Supported Technologies

Mifare/Ntag family TAGs [
ICODE family TAGs

RFID power settings = Auto v

Polling configuration
Polling enabled
Polling time (ms) 0

Ignore last TAG (ms) 0

Fead TAG memory = Off -
Defined TAG event

GPIO: None v

GPIO action: | Toggle LOW ~

Asvnchronous packet: | JSON format v

Built in LED | Blue ~

Duration {ms) 200

Figure 15 Web Interface — polling configuration tab

As shown in Figure 15 above, you can configure different actions for a defined tag (stored in device memory) and
undefined. Both actions have five parameters to configure:

33

d
N £A
nY)
N
E C C e ' Technology Ltd St
Certificate

Embedded RFID made simple

9.1.1 Supported technologies

From version 1.5 onwards, the user can select what transponder technology is supported by the reader, MIFARE/Ntag
and ICODE technology. Due to this option polling time is shorter and the device can be used with only one of the above
two technologies when fastest transponder read performance is needed.

9.1.2 RFID power settings

From version 2.40 onwards, the user can change maximum output power on the RFID antenna. If AUTO is selected
then the device is using dynamic power control function to provide optimum power for the antenna. But if the user
need to reduce RFID power to reduce the range or to limit RF emission then lower power settings can be selected from
seven predefined levels where 7 is the maximum power on the antenna and 1 is minimum power.

9.1.3 Polling loop settings

These settings are related to the polling period for the RFID loop. By default the reader checks TAGs in range every
200ms. From version 1.5 onwards, the user can specify “Ignore timeout” parameter. Thanks to this timeout when the
same TAG is detected in rage of the antenna it will be ignored. If the TAG is presented to the antenna before the
selected ignore same tag timeout has expired, then the timeout is restarted.

9.1.4 Read memory settings

From firmware version 1.5 onwards, the Pepper C1 family supports reading memory content during the polling mode.
This is useful if the user wants to read memory content + UID. The content of the memory is reported in two ways
now:

- When Asynchronous packet is selected to Plain text or JSON format
- Attached to JSON frames sent over MQTT and Web sockets.

Depending upon the transponder technology, the reader can read pages or blocks from MIFARE Classic with
authorization, and other tags like Ultralight, NTAG tags and ICODE when the memory is not protected.

9.1.5 Polling events

The user can set up some automatic actions assigned to the reading events. Depending upon whether the TAG is stored
on the known list or not, different events can be triggered. For both scenarios, the user can setup these fields:

e GPIO - user can select one of the dedicated GPIO to perform an action

e GPIO action — there are two options: toggle LOW or HIGH. If the configured action is to toggle HIGH, then the
selected GPIO remains LOW until the event occurs and then toggles HIGH for a time defined in the Timeout
field. If the selected action is to toggle LOW, then the GPIO remains HIGH until the event occurs and then
toggles LOW.

e Asynchronous packet — the device can send packets over the communication protocol selected in the
communication tab. Three packet options are available:

34

\\\ £)
Eccel.... %2

Embedded RFID made simple

o Binary packet format — with these settings, the module sends the frame in the binary protocol format.
This is the best method if the user already uses binary protocol as the selected communication
method. Here is an example:

Last
Byte no. 0-4 5 6 7 8 9.. two
bytes
o Command OxFE 2)3[3) Card type: SAK UID
Description header CMD Get 0x00 - 1SO14443A | or (4,7 or 8 bytes) CRC16
ASYNC UID 0x10 - 1ISO15693 DSFID ’

Example frame in the binary protocol format:
F50A 00 F5 FF FE 03 01 08 73 64
F5 0A 00 F5 FF — command header

FE — CMD ASYNC (fixed value)

01 -ISO/IEC 14443 Type A
08 - MIFARE Classic 1k (SAK value — 0x08)

73 64 — CRC16
o Plain text — the device sends text strings with basic information about the TAG eg:

UID:54D4F82A; TYPE:1l; KNOWN:O0<\r><\n> (standard Pepper C1)
UID:54D4F82A; TYPE:1; ANTENNA: 1; KNOWN:0<\r><\n> (Pepper C1MUX)

o JSON frame — the module sends a JSON string using the configured communication method. This is the
best option if you want to connect this device to IOT systems. Example below

json i : "uid"
\ uid: "@4BFTFBABL2416EE"
tcp172.16.16.62:1234 ype-string: “unknown subtype"

@ connected known_tag: false

Figure 16 JSON frame example

o Custom text format — since firmware version 2.42 the device is capable to send a text format frame
for RFID event defined by the user. To specify the custom frame format the user can use special macros
in the format defined below:

35

D A
Eccel... %2

Embedded RFID made simple

o %u- tagUID
o %a- antennaindex
o %m- memory content (only if reading memory is setup correctly)
o %i- idx msg/tag counter since restart
o %t- timestamp in milliseconds
o %T -tag type 1-Mifare family, 16 - ICODE
o %p - tag parameter. SAK for Mifare family and DSFID for ICODE
o <CR>- Carriage return
o <LF>- Line feed
Example 1:
Format:

Uptime:%t, idx:%i, ant:%a, sub:%s, uid:%u<CR><LF>

Output:

Uptime:2713, idx:2, ant:0, sub:ICODE SLI, uid:E004010042286400
Uptime:13114, idx:3, ant:0, sub:MIFARE Classic 1k/Plus 2k, uid:438076F7

Example 2:
Format:

[%t]UID:%u<CR><LF>

Output:

[2321]uID:E004010042286400
[4094]uID:438076F7

e Builtin LED — the user can configure the device to toggle the LED in selected colours (Red, Green, Blue,
White)
e Timeout — time used for toggling the GPIO action and LED

9.1.6 Extra settings for MUX device

Select active antennas:

Antenna 1 [J Antenna 5
Antenna 2 [J Antenna 6
Antenna 3 [Antenna 7
[J Antenna 4 [Antenna 8

Known tags on all antennas

Figure 176 Web Interface — extra settings for MUX devices

36

\\\ ’t,\
Eccel....’

Embedded RFID made simple

For MUX devices users can configure extra settings such as which active antennas are active, and since version
2.53, the new feature called "Known tag on all antennas" has been added. Due to this feature, the MUX device
triggers GPIO and LED events as a “Defined tag event” only when known tags are detected on all active
antennas. This can be useful eg. if you have a machine with covers/doors that have to be closed before running
the machine. To add known tags on the MUX device please go to the known tag tab in the web interface list
and add tag UIDs manually, or import them from a file (see section 9.2 to see how to import tags from a file).
To add it manually please use the first active antenna on the device.

9.2 Known UID list

This tab in the web interface is used to manage known UIDs stored in the device memory. Thanks to this, in standalone
mode, the Pepper C1 can perform different actions for known and unknown UIDs. For MUX devices the user should
use the first active antenna.

Known UID list

Pleace the TAG in range of the antenna and click the Search button below.

UID: <«Click Search= | Search |

[Add || Remove selected |

04717FFAOF3ABD(type:00)

E0040100206D3A86(Type:00)

438076F7 (type:08) Tag types (hex):
00: MIFARE Ultralight
08: MIFARE Classic 1k
09: MIFARE Classic
Mimi
18: MIFARE Classic 4k
20: MIFARE DESFire
42: BLE UID
50: BLE PIN

Status: Known UID list updated. UID count 3.
| Export list |
Import known tag list (CSV)

| Wybierz plik | Nie wybrano pliku

Figure 18 Web Interface — know UID list

The UID list can be exported to the CSV file and then imported from the file to other devices. If needed user can
modify the files as it is simple text file that can be edited easily using any text editor.

37

Eccel... “:

Embedded RFID made simple

10. Commands list

Commands are exchanged with the module using the protocol described above. All frames contain a command byte
and command arguments. Depending upon the command, arguments can be optional, so a command length can be in
the range from 1-1024 bytes.

10.1 Generic commands
10.1.1 Acknowledge frame (0x00)

This is the response message from the module to the host. This frame always contains 1-byte with command ID and
optional arguments.

Command description:

Argument Size | Value | Description
Command ID 1 0x00
Related command ID 1 X Related command code
A N X Depending on the requested command this parameter is n-bytes long
and contains parameters
Example:

HOST=>C1l: 0x02

GET_TAG_COUNT command

C1=>HOST: 0x00 - ACK byte
0x02 - related command code GET_TAG_COUNT
0x01 - argument for GET_TAG_COUNT - 0x01l - one tag detected

10.1.2 Error response (OxFF)

In case of any problems with executing the command, the device can send back ERROR response with error number
returned by the RFID chip. The most common errors are described below.

Command description

Argument Size | Value | Description
ERROR 1 OxFF
Command ID 1 0x01 | DUMMY_COMMAND
Example:
C1=>HOST: OXFF - Error byte
0x01 - related command code DUMMY_COMMAND
0x02 - Tayer byte
0x01 - Error number

38

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

Here is a list with the most common errors:
MIFARE DESFire errors — layer byte 0x19

Error byte:

0x80 - MF DF Response - No changes done to backup files

0x81 - MF DF Response - Insufficient NV-Memory

0x82 - MF DF Invalid key number specified

0x83 - MF DF Current configuration/status does not allow the requested command
0x84 - MF DF Requested AID not found on PICC

0x85 - MF DF Attempt to read/write data from/to beyond the files/record's limits
0x86 - MF DF Previous cmd not fully completed. Not all frames were requested or provided by the PCD
0x87 - MF DF Num. of applns limited to 28. No additional applications possible
0x88 - MF DF File/Application with same number already exists

0x89 - MF DF Specified file number does not exist

0x8A - MF DF Crypto error returned by PICC

0x8B - MF DF Parameter value error returned by PICC

0x8C - MF DF DESFire Generic error. Check additional Info

0x8D - MF DF ISO 7816 Generic error. Check Additional Info

ICODE specific errors — layer byte 0x15

Error byte:

0x01 - The command is not supported, i.e. the request code is not recognized
0x02 - The command is not recognized, for example: a format error occurred
0x03 - The command option is not supported

OxOF - Error with no information given or a specific error code is not supported
0x10 - The specified block is not available (doesn't exist)

0x11 - The specified block is already locked and thus cannot be locked again
0x12 - The specified block is locked and its content cannot be changed

0x13 - The specified block was not successfully programmed

0x14 - The specified block was not successfully locked

0x15 - The specified block is protected

0x40 - Generic cryptographic error

0x81 - The command is not supported, i.e. the request code is not recognized
0x82 - The command is not recognized, for example: a format error occurred
0x83 - The command option is not supported

0x84 - Error with no information given or a specific error code is not supported
0x85 - The specified block is not available (doesn't exist)

0x86 - The specified block is already locked and thus cannot be locked again
0x87 - The specified block is locked and its content cannot be changed

0x88 - The specified block was not successfully programmed

0x89 - The specified block was not successfully locked

0x8A - The specified block is protected

0x8B - Generic cryptographic error

39

Other layers errors:

0x01 - No reply received, e.g. PICC removal

0x02 - Wrong CRC or parity detected

0x03 - A collision occurred

0x04 - Attempt to write beyond buffer size

0x05 - Invalid frame format

0x06 - Received response violates protocol

0x07 - Authentication error

0x08 - A Read or Write error occurred in RAM/ROM or Flash
0x09 - The RC sensors signal over heating

OxO0A - Error due to RF.

0x0B - An error occurred in RC communication

0x0C - A length error occurred

0xO0D - An resource error

OxOE - TX Rejected sanely by the counterpart

OxOF - RX request Rejected sanely by the counterpart

0x10 - Error due to External RF

0x11 - EMVCo EMD Noise Error

0x12 - Used when HAL ShutDown is called

0x20 - Invalid data parameters supplied (layer id check failed)
0x21 - Invalid parameter supplied

0x22 - Reading/Writing a parameter would produce an overflow.
0x23 - Parameter not supported

0x24 - Command not supported

0x25 - Condition of use not satisfied

0x26 - A key error occurred

0x7F - An internal error occurred

0xFO — Protocol authorization error. This command is not allowed without protocol authorization (Command 0x12)

40

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

10.1.3 Dummy command (0x01)

This command takes no arguments. It is used to check that the module alive. The module replies to this command with
an ACK response and no optional parameters.

Command description

Argument Size | Value | Description

Command ID 1 0x01 | DUMMY_COMMAND
Response description

ACK 1 0x00

Command ID 1 0x01 | DUMMY_COMMAND

Example:

HOST=>C1l: Ox01 -DUMMY_COMMAND

C1l=>HOST: 0x00 - ACK byte
0x01 - related command code DUMMY_COMMAND

10.1.4 Get tag count (0x02)

The command send to the module to read how many TAGS are in range of the antenna no matter which technology
of tag, so it returns the total amount present of all supported tag types. The maximum number for this standard
discovery loop is 5. If you want to perform a full inventory command for ICODE tag types please refer to
ICODE_INVENTORY_xxx commands.

After this command, the module holds all UID’s and basic information about TAGs present in volatile memory and the
user can read it using the GET_TAG_UID command.

Command description

Argument Size | Value | Description
Command ID 1 0x02 | GET_TAG_COUNT
Response description
ACK 1 0x00
Command ID 1 0x02 | GET_TAG_COUNT
TAG count 1 X Maximum discovered tags is 5
Example:

HOST=>C1: 0x02

Cl=>HOST: 0x00
0x02
0x01

GET_TAG_COUNT

ACK byte
related command code GET_TAG_COUNT
number of tags 1in range

41

N

E c c e ' Technology Ltd
c

Embedded RFID made simple

10.1.5 Get tag UID (0x03)

This command should be executed after GET_TAG_COUNT frame to read information about the tag.

Command description

Argument

Size

Value

Description

Command ID

1

0x03

GET_TAG_UID

TAG idx

1

X

TAG index in module memory, must me less than number of tags
reported by GET_TAG_COUNT command

Response description

ACK

0x00

Command ID

0x03

GET_TAG_UID

TAG type

0x01 - MIFARE Ultralight
0x02 - MIFARE Ultralight-C
0x03 - MIFARE Classic
0x04 - MIFARE Classic 1k
0x05 - MIFARE Classic 4k
0x06 - MIFARE Plus

0x07 - MIFARE Plus 2k
0x08 - MIFARE Plus 4k
0x09 - MIFARE Plus 2k sl2
0x0S - MIFARE Plus 4k sl2
0x0B - MIFARE Plus 2k sl3
0x0C - MIFARE Plus 4k sl3
0x0D - MIFARE DESFire
OxOF - JCOP

0x10 — MIFARE Mini

0x21 — ICODE SLI

0x22 — ICODE SLI-S

0x23 — ICODE SLI-L

0x24 — ICODE SLIX

0x25 — ICODE SLIX-S

0x26 — ICODE SLIX-X

0x27 — ICODE SLIX2

0x28 — ICODE DNA

0x42 — WPAN LE device UID
0x50 — WPAN LE PIN

TAG parameter

SAK - byte for MIFARE family tags
DSFID - byte for ICODE family tags

UIiD

UID bytes. Max length is 8.

Example:

HOST=>C1l: 0x03 - GET_TAG_UID
0x00 - TAG idx

42

S
Eccel...."

Embedded RFID made simple

C1l=>HOST: 0x00 - ACK byte
0x03 - related command code GET_TAG_UID
0x01 - MIFARE tag type
0x20 - tag parameter:

SAK byte for MIFARE family tags
DSFID byte for ICODE family tags
0x74 0x54 0x12 0Ox65 - tag UID bytes

10.1.6 Activate TAG (0x04)

The command executed to activate a TAG after the discovery loop if more than one TAG is detected.

Command description

Argument Size | Value | Description
Command ID 1 0x04 | ACTIVATE_TAG
TAG idx 1 X TAG index in module memory, must me less than number of tags
reported by GET_TAG_COUNT command
Response description
ACK 1 0x00
Command ID 1 0x04 | ACTIVATE_TAG
Example:
HOST=>Cl: 0x04 - ACTIVATE_TAG
0x00 - TAG 1idx
C1=>HOST: 0x00 - ACK byte
0x04 - related command code ACTIVATE_TAG

10.1.7 Halt (0x05)

The Halt command takes no arguments. It halts the tag and turns off the RF field. It must be executed at the end of
each operation on a tag to disable the antenna and reduce the power consumption.

Command description

Argument Size | Value | Description
Command ID 1 0x05 | HALT
Response description
ACK 1 0x00
Command ID 1 0x05 | HALT
Example:

HOST=>C1l: Ox05 - HALT

C1=>HOST: 0x00 - ACK byte
0x05 - related command code HALT

43

S
Eccel...."

Embedded RFID made simple

10.1.8 Set polling (0x06)

The module can’t perform polling mode and RFID requests over the communication channels simultaneously. When
polling is enabled and the host wants to request an RFID command, this command should be executed first with a STOP
parameter, and then START again if needed afterwards. This command does not change polling configuration
permanently, so after a reset, the module performs polling as configured in the Web Interface.

Command description

Argument Size | Value | Description
Command ID 1 0x06 | SET_POLLING

— [li
Start/Stop 1 X 0x00 — Stop polling

0x01 — Start polling
Response description

ACK 1 0x00
Command ID 1 0x06 | SET_POLLING
Example:

HOST=>C1: 0x06

SET_POLLING

0x00 - Stop polling temporary
C1l=>HOST: 0x00 - ACK byte
0x06 - related command code SET_POLLING

10.1.9 Set key (0x07)

This command sets a KEY in Key Storage Memory on a selected slot. Set key can be used for all RFID functions needing
authorization like e.g. READ/WRITE memory on the TAG etc. This command changes a key in volatile memory, so if the
user wants to save it permanently and load automatically after boot-up, then the user should use the CMD_SAVE_KEYS
command.

Command description

Argument Size Value | Description
Command ID 1 0x07 | SET_KEY
Key number 1 0-4 Key number in Key Storage Memory.

0x00 - AES 128 Key. (length = 16 bytes)

0x01 - AES 192 Key. (length = 24 bytes)

0x02 - AES 256 Key. (length = 32 bytes)

Key type 1 0-6 | 0x03 - DES Single Key. (length = 16 bytes)

0x04 - 2 Key Triple Des. (length = 16 bytes)

0x05 - 3 Key Triple Des. (length = 24 bytes)

0x06 - MIFARE (R) Key. (length = 12 bytes, key A+B)
Key 12-32 X Key bytes. Length must match to the type.
Response description

ACK 1 0x00
Command ID 1 0x07 | SET_KEY

44

Eccel.... %

Embedded RFID made simple

Example:

HOST=>C1l: O0x07 - SET_KEY
0x00 - Key number
0x06 - MIFARE key type
0x00 0x00 0x00 0x00 0x00 0x00
OxFF OxFF OxFF OXFF OxFF OXFF - Key bytes

C1=>HOST: 0x00 - ACK byte
0x07 - related command code SET_KEY

10.1.10 Save keys (0x08)

This command should be called if the user wants to save keys changed using the SET_KEY command in the module
non-volatile memory. Saved keys will be automatically loaded after power up or reboot.

Command description

Argument Size | Value | Description
Command ID 1 0x08 | SAVE_KEYS
Response description
ACK 1 0x00
Command ID 1 0x08 | SAVE_KEYS
Example:

HOST=>C1l: Ox08 - SAVE_KEYS

C1=>HOST: 0x00 - ACK byte
0x08 - related command code SAVE_KEYS

10.1.11 Network config (0x09)

This command should be used to setup or read network parameters. Depending upon the second byte of the
command, different parameters of the network configuration can be changed. Below is the full list of possible network
parameters. Also, the ACK response contains a byte detailing the parameters that have been set.

To read current settings the host should send the request without parameters, the ACK response contains current
settings of this requested field.

10.1.11.1 Setting Wi-Fi mode
This command has one argument to setup Wi-Fi adapter mode to: Access Point, Client or Off. In the case of the Wi-Fi

adapter being disabled, the user needs to use this command again with different settings to enable it again or just
perform a factory reset.

45

D
Eccel....

Embedded RFID made simple

Command description

Argument Size | Value | Description

Command ID 1 0x09 | NET_CFG

Subcommand ID 1 0x00 | Wi-Fi mode subcommand
0x00 — Access Point

Mode (optional) 1 X 0x01 — Client

0x02 — Wi-Fi adapter off
Response description

0x00

0x09 | NET_CFG

0x00 | Wi-Fi mode subcommand
X Same as for request

ACK

Command ID

Subcommand ID

Mode (optional)
Examplel - set mode:

[N PN SN RN

HOST=>C1l: 0x09 - NET_CFG
0x00 - wi-Fi mode subcommand
0x01 - Client mode

Cl=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x00 - wi-Fi mode subcommand

Example2 - get mode:

HOST=>C1l: Ox09 - SET_NET_CFG
0x00 - wi-Fi mode subcommand

C1=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x00 - wi-Fi mode subcommand
0x01 - Client mode

10.1.11.2 Wi-Fi authorization mode

This command gets one argument to setup Wi-Fi authorization mode. This setting is only applied in Access Point mode.
In client mode authorization is automatically detected.

Command description

Argument Size | Value | Description
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 0x01 | Wi-Fi authorization mode subcommand
X 0x00 — Open
0x01 — WEP

0x02 — WPA PSK

0x03 — WPA2_PSK

0x04 - WPA_WPA2_PSK

0x05 - WPA2_ENTERPRISE
Response description

Mode 1

46

S
Eccel...."

Embedded RFID made simple

ACK 1 0x00
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 0x01 | Wi-Fi authorization mode subcommand
Mode 1 X Same as for request
Example:
HOST=>C1l: 0x09 - NET_CFG
0x01 - wi-Fi authorization mode subcommand
0x03 - WPA2_PSK
C1=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x01 - wi-Fi authorization mode subcommand

10.1.11.3 Wi-Fi channel

This command gets one argument to setup the Wi-Fi channel. This setting is only applied in Access Point mode. In client
mode, the channel is automatically detected.

Command description

Argument Size | Value | Description

Command ID 1 0x09 | NET_CFG

Subcommand ID 1 0x02 | Wi-Fi channel subcommand
Channel (optional) 1 1-13 | Channel number

Response description

ACK

Command ID

Subcommand ID

Channel (optional)
Example:

0x00
0x09 | NET_CFG

0x02 | Wi-Fi channel subcommand
1-13 | Channel number

R(R|R|R

HOST=>C1l: 0x09 - NET_CFG
0x02 - wWi-Fi channel mode
0x05 - channel number

C1=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x02 - wWi-Fi channel mode

10.1.11.4 Wi-Fi network SSID

This command sets/gets the SSID for the Wi-Fi adapter. Depending upon mode configuration, this setting will be
applied to Access Point or Client.

Command description
Argument Size | Value | Description
Command ID 1 0x09 | NET_CFG

47

S
Eccel...."

Embedded RFID made simple

Subcommand ID 1 0x03 | Wi-Fi SSID subcommand
Channel(optional) 1-32 X SSID - network name
Response description

ACK 1 0x00

Command ID 1 0x09 | NET_CFG

Subcommand ID 1 0x03 | Wi-Fi SSID subcommand

Channel(optional) 1-32 X SSID - network name
Example:

HOST=>C1l: 0Ox09 - NET_CFG
0x03 - Wi-Fi SSID subcommand
0x50 0x65 0x65 0x70 0x65 0x72 Ox5f 0x43 0x31] - network SSID

C1=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x03 - wi-Fi SSID subcommand

10.1.11.5 Wi-Fi network password

This command sets/gets the password for the Wi-Fi network. Depending upon mode configuration, this setting will be
applied to Access Point or Client.

Command description

Argument Size | Value | Description
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 0x04 | Wi-Fi SSID network password
Password(optional) 1-32 X Password
Response description
ACK 1 0x00
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 0x04 | Wi-Fi SSID network password
Password (optional) 1-32 X Password
Example:

HOST=>C1l: 0x09 - NET_CFG
0x04 - wi-Fi password subcommand
0x61 0Ox64 0x6d 0x69 Ox6e - network password

C1=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x04 - wi-Fi password subcommand

10.1.11.6 Network IP address mode

This command gets one argument to setup network address mode: DHCP client or static IP address. In the case of static
IP being selected, the user needs to provide IP addresses for the module IP, netmask, gateway and DNS.

48

D
Eccel....’

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 0x05 | IP address mode subcommand
Network address 1 X 0x00 — DHCP client
mode(optional) 0x01 — Static IP
Response description
ACK 1 0x00
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 0x05 | IP address mode subcommand
Network address 1 X 0x00 — DHCP client
mode(optional) 0x01 — Static IP

Example:

HOST=>C1l: 0x09 - NET_CFG
0x05 - IP address mode subcommand
0x00 - static IP address mode

C1l=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x05 - IP address mode subcommand

10.1.11.7 Network IP addresses

These four subcommands should be used to setup: IP address, netmask, gateway and DNS. If a DHCP client is enabled
with the command described above these settings are ignored.

Command description
Argument Size | Value | Description
Command ID 1 0x09 | NET_CFG
0x06 — IP address
0x07 — netmask address
0x08 — gateway address
0x09 — DNS address
Address (optional) 4 X Address bytes
Response description

Subcommand ID 1 X

ACK 1 0x00
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 %))((%69_ Address mode subcommand
Address (optional) 4 X Address bytes
Example:

HOST=>C1l: 0x09 - NET_CFG
0x06 - IP address subcommand
0xCcO0 OxA8 0x00 0x02 - IP address 192.168.0.2

49

S
Eccel...."

Embedded RFID made simple

C1l=>HOST: 0x00 - ACK byte
0x09 - related command code NET_CFG
0x06 - IP address subcommand

10.1.11.8 Web Interface user name and password (0x09)

This command should be used to setup the username and password needed to access the web interface. Default
settings for the username and password are admin/admin.

Command description
Argument Size | Value | Description
Command ID 1 0x09 | NET_CFG
0x0A — User name subcommand

LT 1 X 0x0B — password subcommand
User/password
1-32
(optional) 3 X Username/password bytes
Response description

ACK 1 0x00
Command ID 1 0x09 | NET_CFG
Subcommand ID 1 X 0x0A — User name subcommand

0x0B — password subcommand
User./password 1-32 X Username/password bytes
(optional)

Example:

HOST=>Cl: 0x09 - NET_CFG
0Ox0OB - web password subcommand
0x61 0x64 0Ox6d 0x69 Ox6e - web Interface password

C1=>HOST: 0x00 - ACK byte
0x09 related command code NET_CFG
0x0B - web password subcommand

10.1.12 Reboot (Ox0A)

This command requests a software reboot for the Pepper C1 module. After this command the device will not accept
any protocol commands for 1 second. In case of communication over WiFi this time can be longer and depends upon
network configuration.

Command description

Argument Size | Value | Description
Command ID 1 0x0A | REBOOT
Response description
ACK 1 0x00
Command ID 1 0x0A | REBOOT

50

N

e
E C c e ' Technology Ltd
c

Embedded RFID made simple

Ox0A - related command code REBOOT

Example:
HOST=>C1l: OxOA - REBOOT
C1=>HOST: 0x00 - ACK byte
10.1.13 Get version (0x0B)

This command requests a version string from the device.

Command description

Argument Size | Value | Description
Command ID 1 Ox0B | GET_VERSION
Response description
ACK 1 0x00
Command ID 1 Ox0B | GET_VERSION
Version strin X X Version string, contains major and minor version and build data and time
& e.g.:1.1Jan 18 2019 15:35:03
Example:
HOST=>C1l: OxOB - GET_VERSION
C1=>HOST: 0x00 - ACK byte
0Ox0B - related command code GET_VERSION
0x31 Ox2e 0x31 0x20 Ox4a 0x61 Ox6e 0x20
0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x20
0x31 0x35 Ox3a 0x33 0x35 0x3a 0x30 0x33 - version string bytes
10.1.14 UART passthru (0x0C)

This command is used to transmit and receive data to the UART2 port using binary protocol. Thanks to this the host
application can communicate with an external device attached to the UART2 port. This option can be really useful
when an application requires communication with an external device, and thanks to the built in WiFi interface, the
Pepper C1 can act as a bidirectional WiFi to UART bridge.

Command description

Argument Size | Value | Description
Command ID 1 0x0C | UART_PASSTHRU
Data X X Data to pass over UART2 port
Response description
ACK 1 0x00
Command ID 1 0x0C | UART_PASSTHRU
Data X X Data transmitted or received over UART2 port
Example:
HOST=>C1l: Ox0C - UART_PASSTHRU

0x31 Ox2e 0x31 0x20 Ox4a 0x61 - data bytes

51

D
Eccel.... %

50 9001
Embedded RFID made simple Certificate No. GB2005225

C1=>HOST: 0x0C - UART_PASSTHRU
0x34 Ox2e 0x35 0x20 Ox4b 0x60 - data bytes

10.1.15 Sleep command (0x0D)

This command requests the device to enter in to sleep mode. Please read the “Sleep mode” chapter to get more
information about this feature. To wake up the device user can send any byte or keep sending the DUMMY COMMAND
and wait for the correct response. Because of limits of the Pepper C1 MCU when this command is executed over
UARTO/USB the device can enter only in to light sleep and power consumption is about 1mA. So if the application
needs maximum power saving it is recommended to use UART2 pins for communication and the device can enter in
to full deeps sleep mode.

Command description

Argument Size | Value | Description
Command ID 1 0xOD | SLEEP
Response description
ACK 1 0x00
Command ID 1 0xOD | SLEEP
Example:

HOST=>C1l: OxOD - SLEEP

C1l=>HOST: 0x00 - ACK byte
0x0C - related command code SLEEP

10.1.16 GPIO command (OxOE)

This command should be used to setup GPIO pins on the J1 header. The user can use the following GPI0Os: 4, 5, 16, 17
(Pepper C1vl)and 2, 21, 32, 33 (Pepper C1 v2). All of these pins can be used as inputs (with pull up/pull down option)
or as output pins. For the GPIO output command, the user doesn’t need to setup a pin as an output, this is done
automatically when the first command setting level or toggling level on the pin is requested. For the input command,
the host application should first setup the pin as input with option like pull up/down if needed.

Command description
Argument Size | Value | Description
Command ID 1 0xOE | GPIO command
0x00 — setup pin as GPIO_INPUT
0x01 — setup pin as GPIO_INPUT with PULL_UP enabled
0x02 — setup pin as GPIO_INPUT with PULL_ DOWN enabled
0x03 — setup pin as GPIO_OUTPUT with level HIGH
0x04 — setup pin as GPIO_OUTPUT with level LOW
0x05 — toggle GPIO low for specified time
0x06 — toggle GPIO high for specified time
0x07 — read GPIO pin status

Subcommand ID 1 X

52

S
Eccel...."

Embedded RFID made simple

GPIO number

GPIO number in hex format. Values allowed are 4,5,16,17 (Pepper C1 v1)
1 X 2,21,32,33 (Pepper C1 v2) and GPIO 25,27 if UART2 is disabled in the
configuration.

Toggle timeout

Optional bytes for TOGGLE_LOW/TOGGLE_HIGH subcommands. Number
of milliseconds defined as unsigned 16bit value with LSB order.

Response description

ACK

1 0x00

Command ID

1 OxOE | GPIO command

GPIO level

Optional byte received when READ command is requested
1 X 0x00 - GPIO is in LOW state
0x01 - GPIO is in HIGH state

Examplel - setup GPIO17 as input port with pull up enabled:

HOST=>C1l: OxOE
0x01
Ox11

Cl=>HOST: 0x00
Ox0E

GPIO command
input port with PULL UP enabled
GPIO1l7

ACK byte
related command code GPIO

Example2 - read state of GPI032:

HOST=>C1l: OxOE

GPIO command

0x07 - read pin status
0x20 - GPIO032
C1=>HOST: 0x00 - ACK byte
Ox0E - related command code GPIO
0x01 - HIGH value on the GPI0O32
10.1.17 Set active antenna (0xOF) — Pepper C1 MUX only

This command sets the active antenna number. Available numbers are from 1 to 8.

Command description

Argument

Size | Value | Description

Command ID

1 | OXOF | SET_ACTIVE_ANTENNA

Antenna number

1 X Number from 1to 8

Response description

ACK 1 0x00
Command ID OxOF | SET_ACTIVE_ANTENNA
Antenna number 1 X Currently set antenna number

Example:

HOST=>C1: OxOF

SET_ACTIVE_ANTENNA

0x02 - select the antenna number 2
C1=>HOST: 0x00 - ACK byte
OxXOF - related command code SET_ACTIVE_ANTENNA

53

S
Eccel...."

Embedded RFID made simple

0x02 - Currently set antenna number

10.1.18 WPAN pin command (0x10)

This command should be used to setup the PIN for the WPAN interface. Default PIN is ‘0000’. If you call this command
without any PIN parameter, then the device sends a response containing the current PIN settings.

Command description

Argument Size | Value | Description

Command ID 1 0x10 | WPAN_PIN

PIN 4 X Four digits pin number (optional)
Response description

ACK 1 0x00

Command ID 1 0x10 | WPAN_PIN

Current PIN 4 X
Examplel - setup new PIN:

HOST=>C1l: Ox10 - WPAN_PIN
0x31 0x32 0x33 0x34 - New pin value ‘1234’

C1l=>HOST: 0x00 - ACK byte
0x10 - related command code WPAN_PIN

Example2 - read current PIN:
HOST=>C1l: 0x10 - WPAN_PIN

C1=>HOST: 0x00 - ACK byte
0x10 - related command code WPAN_PIN
0x31 0x32 0x33 0x34 - Pin value ‘1234’

10.1.19 Factory reset command (0x11)

This command should be user to perform a factory reset. To prevent resetting to factory default by accident, this
commands requires four extra bytes as extra parameters described in the table below.

Command description

Argument Size | Value Description

Command ID 1 0x11 FACTORY_RESET

Extra bytes 4 0x01 0x02 0x03 0x04 | Four digits pin number (optional)
Response description

ACK 1 0x00

Command ID 1 Ox11 FACTORY_RESET _PIN

Example — setup new PIN:

HOST=>C1l: Ox11l - FACTORY_RESET
0x01 0Ox02 0x03 0x04 - Extra parameters

54

\\\ ‘:.f‘v e <) 1
Eccel .. %

Embedded RFID made simple

C1l=>HOST: 0x00 - ACK byte

10.1.20

Protocol authorization (0x12)

From firmware version 1.7 onwards, the Pepper C1 reader supports protocol authorization for wireless interfaces like
WPAN LE service and TCP client and server. This option helps to protect these interfaces from unauthorized access. If
this password is set in the configuration, then the user has to use this command every time in order to establish and
authorize a new connection with the reader, before executing other commands. Two commands are available for
executing without authorization "Dummy command" and "Get version". The Password can be set using this command

or by using the web interface.

0x11l - related command code FACTORY_RESET

Command description

Argument Size | Value Description
Command ID 1 0x12 PROTOCOL_AUTH
0x00 — login
Option 1 X 0x01 — modify password
0x02 — query for password
Password 1-32 X Password for login or modify option
Response description
ACK 1 0x00
Command ID 1 0x12 PROTOCOL_AUTH
Password 1-32 X Optional password for option 0x02

Example - login procedure:

HOST=>Cl: 0x12 - PROTOCOL_AUTH
0x00 - Togin option

0x31 0x32 0x33 0x34 0x35 0x36 0x37 - password bytes

C1=>HOST: 0x00 - ACK byte
0x12 - related command code PROTOCOL_AUTH

Example — query for password:

HOST=>C1l: Ox12 - PROTOCOL_AUTH

0x02 - query for password

C1=>HOST: 0x00 - ACK byte
0x12 - related command code PROTOCOL_AUTH

10.1.21

This set of frames can be used to setup all parameters for different communication methods. The first byte is the
subtype of the frame. To get current settings, the host has to send this frame with a subcommand ID only.

0x31 0x32 0x33 0x34 0x35 0x36 0x37 - password bytes

Protocol configuration (0x13)

55

D ¢
Eccel.... %

Embedded RFID made simple

10.1.21.1 General settings

With this command the host can setup general settings for the device like MDNS service and UDP discovery service.
As an optional argument, the user can send a new device name.

Command description
Argument Size | Value Description
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x00 General subcommand ID
MDNS service 1 X 0x00 — disabled, 0x01 — enabled
UDP discovery service 1 X 0x00 — disabled, 0x01 — enabled
Device name length 1 X Length of the device name
Device name X X Device name as ASCII bytes
Response description
ACK 1 0x00
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x00 General subcommand ID

Example — setup general settings procedure:

HOST=>C1l: 0x13 - PROTOCOL_CONFIG

0x00 - general subcommand
0x01 - MDNS service enabled
0x01 - UDP service enabled
0x10 - device name Tlength

0x50 0Ox65 0x70 0x70 0Ox65 0x72 Ox5f 0x43
0x31 0x2d 0x31 Ox41 0x36 0x34 0x44 0x34 - device name bytes

C1=>HOST: 0x00 - ACK byte
0x13 - related command code PROTOCOL_CONFIG
0x00 - general subcommand ID

Example query:

HOST=>C1l: 0Ox13 - PROTOCOL_CONFIG
0x00 - query for general config

C1=>HOST: 0x00 - ACK byte
0Ox13 - PROTOCOL_CONFIG
0x00 - general settings subcommand
0x00 - MDNS disabled
0x01 - UDP discovery enabled
0x10 - device name length
0x50 0x65 0x70 0x70 0Ox65 0x72 Ox5f 0x43
0x31 O0x2d 0x31 Ox41 0x36 0x34 0x44 0x34 - device name bytes

10.1.21.2 UART settings
With this command the host can setup UART parameters.

56

D
Eccel....

Embedded RFID made simple

Command description

Argument Size | Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x01 UART subcommand

0x00 — Binary protocol

ART! | 1 X
U 0 protoco 0x01 — Console logs

0x00 — 9600 bps
0x01 — 19200 bps
0x02 — 38400 bps
0x03 — 57600 bps
0x04 — 115200 bps
0x05 — 230400 bps
0x06 — 460800 bps
0x07 — 921600 bps

UARTO baud 1 X

0x00 — Binary protocol

0x01 — Console logs

0x02 — Modbus

0x03 — RS485 binary protocol
0x04 — Passthru mode

0x05 — Disabled

UART2 protocol 1 X

0x00 — 9600 bps
0x01 — 19200 bps
0x02 — 38400 bps
0x03 — 57600 bps
0x04 — 115200 bps
0x05 — 230400 bps
0x06 — 460800 bps
0x07 — 921600 bps

UART2 baud 1 X

Option bytes X X Option bytes described below

Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x01

Option bytes description

Protocol Size | Value Description
Modbus/ RS485 binary 1 X Device address on RS485
1 X Passthru Wi-Fi connected frame length
Passthru X X bytes Passthru Wi-Fi connected frame bytes
1 X Passthru Wi-Fi disconnected frame length
X X bytes Passthru Wi-Fi disconnected frame bytes
Example:

HOST=>C1: Ox13 - PROTOCOL_CONFIG
0x01 - UART subcommand

57

S
Eccel...."

Embedded RFID made simple

0x01 - Console Togs on UARTO

0x04 - 115200 baud

0x04 - uart passthru mode on UART2
0x04 - 115200 baud

0x00 - UART passthru wifi connected frame length, no data bytes
0x03 - UART passthru wifi disconnected frame length
0x50 O0x65 0x70 - data bytes

C1=>HOST: 0x00 - ACK byte
0x13 - related command code PROTOCOL_CONFIG
0x01 - UART subcommand ID

10.1.21.3 TCP server settings
This command should be used to setup TCP server parameters.

Command description
Argument Size | Value Description
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x02 TCP server subcommand ID
Service enabled 1 X 0x00 — disabled, 0x01 — enabled
TCP server port 2 X Port two bytes LSB first
TCP server timeout 2 X Timeout in seconds, LSB first
Response description
ACK 1 0x00
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x02 TCP server subcommand ID

Example:

HOST=>C1l: 0x13 - PROTOCOL_CONFIG
0x02 - TCP subcommand ID
0x01 - service enabled
OxD2 0x04 - TCP port 1234
0x00 0x00 - timeout

C1=>HOST: 0x00 - ACK byte
0x13 - related command code PROTOCOL_CONFIG
0x02 - general subcommand ID

10.1.21.4 TCP client settings

This command should be used to setup TCP client parameters.

Command description

Argument Size | Value Description

Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x03 TCP client subcommand ID
Service enabled 1 X 0x00 — disabled, 0x01 — enabled
TCP port 2 X Port two bytes LSB first

TCP client timeout 2 X Timeout in seconds, LSB first

58

Eccel...."

Embedded RFID made simple

TCP server address ‘ X ‘ X | server address as ASCII bytes
Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x03 TCP client subcommand ID

Example:

HOST=>C1: 0x13
0x03
0x01
0OxD2
0x00
0x65
Ox2e

0x00
0x13
0x03

C1l=>HOST:

10.1.21.5

— PROTOCOL_CONFIG

— TCP server subcommand ID

- service enabled

0x04 - TCP port 1234

0x00 - timeout

0x78 0x61 Ox6d 0x70 Ox6c 0x65

0x63 Ox6f Ox6d - server address bytes example.com

- ACK byte
- related command code PROTOCOL_CONFIG
- TCP server subcommand ID

WPAN settings

This command should be used to setup WPAN interface parameters

Command description

Argument Size | Value Description
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x04 WPAN subcommand ID

0x00 — disabled

. 0x01 — WPAN SPP

e ! X 0x02 — WPAN Low Energy service

0x03 — WPAN HID service
e e X - SPP service - 4 bytes WPAN PIN

- HID service - Send ENTER after UID 0x00 — disabled, 01-enabled
Response description

ACK 1 0x00
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x03 WPAN subcommand ID

Example:

HOST=>C1l: 0x13
0x04
0x01
0x31
0x00
0x13
0x04

Cl1=>HOST:

— PROTOCOL_CONFIG

- WPAN subcommand ID

- SPP service enabled

0x32 0x33 0x34 - SPP pin ‘1234’

- ACK byte

- related command code PROTOCOL_CONFIG
- WPAN subcommand ID

59

N

2
E C C e ' Technology Ltd
Certificate

Embedded RFID made simple

10.1.21.6 MQTT client settings

This command should be used to setup MQTT parameters.

Command description

Argument Size | Value Description

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x05 MQTT subcommand ID

Service enabled 1 X 0x00 — disabled, 0x01 — enabled

Port 2 X MQTT server port, LSB first

Server length 1 X Server name length

Server name X X Server name as ASCII bytes

User name length 1 X User name length

User name X X User name ASCII bytes

Password length 1 X Password name length

Password X X Password ASCII bytes

Out topic length 1 X Out topic name length

Out topic X X Out topic ASCII bytes

In topic length 1 X In topic name length

In topic X X In topic ASCII bytes
Response description

ACK 1 0x00

Command ID 1 0x13 PROTOCOL_CONFIG

Subcommand ID 1 0x05 MQTT subcommand ID

Example:

HOST=>C1l: 0x13
0x05
0x01
0Ox5B
0x0B
0x6C
0x04
0x08

0x08
0x07

— PROTOCOL_CONFIG

- MQTT subcommand ID

- MQTT service enabled
- port 1883
0x6D 0x70

Ox6F 0Ox6D -server length + server bytes
0x72 - user name length + username bytes
0x73 0x77 Ox6F 0x72 0x64

password length byte + password bytes
0x64 Ox5F Ox6F 0x75 0x74

out topic length byte + out topic bytes
0x64 Ox5F 0x69 Ox6E

in topic length byte + in topic bytes

0x07
0x65
0x65
0x75
0x70

Ox72
Ox72

0x78 0x61
O0x2E 0x63
0x73 0x65
0x61 0x73

0x66 0x69
0x66 0x69

C1=>HOST: 0x00 - ACK byte
0x13 - related command code PROTOCOL_CONFIG
0x05 - MQTT subcommand ID

60

S
Eccel...."

Embedded RFID made simple

10.1.21.7 REST API settings

This command should be used to set up the REST API parameters. REST APl can work over HTTP and HTTPS but the
secure version needs a lot of memory and therefore may not work with WPAN services enabled at the same time. It is
also recommended to set up “Ignore the last TAG” in the RFID polling configuration to a value higher than 1000ms.

Command description
Argument Size | Value Description
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x06 REST API subcommand ID
Service enabled 1 X 0x00 — disabled, 0x01 — enabled
0x00 — disabled
Authorization type 1 X 0x01 — Basic
0x02 - Digest
URL length 1 X URL name length
URL name X X URL name as ASCII bytes
User name length 1 X User name length
User name X X User name ASCII bytes
Password length 1 X Password name length
Password X X Password ASCII bytes
Response description
ACK 1 0x00
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x06 REST API subcommand ID
Example:
HOST=>C1l: Ox13 - PROTOCOL_CONFIG
0x06 - REST API subcommand ID
0x01 - service enabled

0x01 - Authorization type set to Basic
0x0B 0x65 0x78 0Ox61 Ox6D 0x70
0x6C 0Ox65 Ox2E 0x63 Ox6F Ox6D - URL length + URL bytes
0x04 0x75 0x73 0x65 0x72 - user name length + username bytes
0x08 0x70 0x61 0x73 0x73 0x77 Ox6F 0x72 0x64
- password length byte + password bytes

C1=>HOST: 0x00 - ACK byte
0x13 - related command code PROTOCOL_CONFIG
0x05 - REST API subcommand ID

10.1.21.8 Web socket settings

This command should be used to setup Web server settings.

Command description
Argument Size | Value Description
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x07 Web socket subcommand ID

61

N

E C c e I Technology Ltd
c

Embedded RFID made simple

Service enabled 1 X 0x00 — disabled, 0x01 — enabled
URL length 1 X URL name length
URL name X X URL name as ASCII bytes
Response description
ACK 1 0x00
Command ID 1 0x13 PROTOCOL_CONFIG
Subcommand ID 1 0x07 Web socket subcommand ID
Example:
HOST=>C1l: 0x13 - PROTOCOL_CONFIG
0x07 - web service subcommand ID
0x01 - service enabled
0Ox0B 0x65 0x78 0x61 0x6D 0x70
0x6C 0x65 Ox2E 0x63 Ox6F Ox6D - URL length + URL bytes
C1=>HOST: 0x00 - ACK byte
0x13 - related command code PROTOCOL_CONFIG
0x05 - web service subcommand ID
10.1.22 LED command (0x14)

This command should be used to control the built-in LED. The first three bytes are the RGB value of the colour and the
optional two bytes are the timeout in milliseconds.

Command description

Argument Size | Value Description

Command ID 1 0x14 LED command

GPIO number 3 RRGGBB | RGB colour value

Timeout 2 X Number of milliseconds defined as unsigned 16bit value LSB order.
Response description

ACK 1 0x00

Command ID 1 0x14 LED command

Example:

HOST=>C1l: Ox14 - LED command
OXFF 0x00 0x00 - set red colour
0x64 0x00 - timeout 100ms

C1=>HOST: 0x00 - ACK byte
0x14 - related command code LED

10.1.23 WPAN data command(0x15)

This command should be used to send/receive frames from WPAN or WPAN SPP interface. Please read more about

bridge in section 9.4.

Command description
Argument Size | Value Description
Command ID 1 0x15 WPAN data
Data X X Bytes forwarded to the WPAN LE /WPAN SPP interface

62

Eccel...."

Embedded RFID made simple

Response description

ACK 1 0x00
Command ID 1 0x15 WPAN data
Example:

HOST=>C1l: 0x1l5 - WPAN data
0x64 0x00 - timeout 100ms

C1=>HOST: 0x00 - ACK byte
0x15 - related command code WPAN data

10.1.24 Polling setup (0x16)

This set of frames can be used to setup most of parameters for RFID polling. The first byte is the subtype of the frame.
To get current settings, the host has to send this frame with a subcommand ID only.

10.1.24.1 Supported technologies (0x00)

With this command the host can setup general settings for the device like MDNS service and UDP discovery service.
As an optional argument, the user can send a new device name.

Command description

Argument Size | Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x00 Supported technologies subcommand ID

Technologies 1 X 0x01 — Mifare, 0x10 — ICODE, 0x11 — Mifare + ICODE
Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x00 Supported technologies subcommand ID

Example set command:

HOST=>C1l: Ox16 - POLLING_SETUP
0x00 - Supported technologies subcommand ID
0x11 - Enable both Mifare and ICODE

C1=>HOST: 0x00 - ACK byte
0x16 - related command code POLLING_SETUP
0x00 - Supported technologies subcommand ID

Example get command:

HOST=>C1l: Ox16 - POLLING_SETUP
0x00 - query supported technologies subcommand ID

C1=>HOST: 0x00 - ACK byte
0x16 - POLLING_SETUP
0x00 - Supported technologies subcommand ID

63

D &
Eccel.... .

Embedded RFID made simple

0x01 - Mifare technology enabled

10.1.24.2 RFID power (0x01)

With this command the host can setup output power for RFID antenna. By default the power is set to value 0 and that
means it is automatic power control by the device. If user want to use fixed power then it can be selected from level
1 to level 7 where 7 is maximum power output. New power is automatically saved in the device memory but device
needs a restart to apply new changes.

Command description

Argument Size | Value Description
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x01 RFID power subcommand ID

0x0 — Automatic power control
0x01 — 0x07 — fixed power level
Response description

Power 1 X

ACK 1 0x00
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x01 RFID power subcommand ID

Example set command:

HOST=>C1l: Ox16 — POLLING_SETUP
0x01 - RFID power subcommand ID
0x01 - Set minimum power

C1=>HOST: 0x00 - ACK byte
0x16 - related command code POLLING_SETUP
0x01 - RFID power subcommand ID

Example get command:

HOST=>C1l: Ox16 - POLLING_SETUP
0x01 - Query for RFID power

C1=>HOST: 0x00 - ACK byte
0x16 - POLLING_SETUP
0x01 - RFID power subcommand ID
0x01 - RFID power set to level 1

10.1.24.3 Internal polling control (0x02)

With this command the host can enable/disable internal polling. Comparing to command set polling this one is
permanent and it is saved in the device memory and restored after restart.

Command description
Argument Size | Value Description
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x02 Polling enabled subcommand ID

64

S
Eccel...."

Embedded RFID made simple

0x00 — Disabled
Enable flag 1 X 0x01 - Enabled
Response description
ACK 1 0x00
Command ID 1 Ox16 POLLING_SETUP
Subcommand ID 1 0x02 Polling enabled subcommand ID

Example set command:

HOST=>C1l: 0x16
0x02
0x01

0x00
Ox16
0x02

C1l=>HOST:

Example get command:

HOST=>C1l: 0x16

0x02
Cl=>HOST: 0x00
0x16
0x02
0x01
10.1.24.4

POLLING_SETUP
Polling enabled subcommand ID
Set polling enabled

ACK byte
related command code POLLING_SETUP
RFID power subcommand ID

POLLING_SETUP
Query polling enabled flag

ACK byte

POLLING_SETUP

Polling enabled subcommand ID
enabled flag

Polling timeout (0x03)

With this command the host can set the timeout between polling reads.

Command description

Argument Size | Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x03 Polling timeout subcommand

Timeout 2 X Timeout value in milliseconds as unsigned 16bit value
Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x03 Polling timeout subcommand

Example set command:

HOST=>C1l: 0x16 - POLLING_SETUP
0x03 - Polling timeout subcommand ID
Oxff 0x00 - Timeout set as 255ms

C1l=>HOST: 0x00 - ACK byte
0x16 - related command code POLLING_SETUP
0x03 - Polling timeout subcommand ID

65

N

e
;)

Technologyltd 5

Certificate

Embedded RFID made simple

Example get command:

HOST=>C1l: 0x16
0x03

Cl=>HOST: 0x00
0x16
0x03
Oxff

POLLING_SETUP
Polling timeout subcommand

ACK byte
POLLING_SETUP
Polling timeout subcommand

0x00 - timeout value

10.1.24.5 Ignore timeout (0x04)

With this command, the host can set the ignore timeout for the last detected tag. This timer starts counting when the
tag is removed from the antenna field.

Command description

Argument Size | Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x04 Ignore timeout subcommand

Timeout 2 X Timeout value in milliseconds as unsigned 16bit value
Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x04 Ignore timeout subcommand

Example set command:

HOST=>Cl: 0Ox16 - POLLING_SETUP
0x04 - Ignore timeout subcommand ID
0x00 - Timeout set as 255ms

Oxff

Cl=>HOST: 0x00
0x16
0x04

Example get command:

HOST=>C1l: 0x16
0x04

Cl=>HOST: 0x00
0x16
0x04
Oxff

ACK byte
related command code POLLING_SETUP
Ignore timeout subcommand ID

POLLING_SETUP
Ignore timeout subcommand

ACK byte
POLLING_SETUP
Ignore timeout subcommand

0x00 - timeout value

10.1.24.6 Polling antennas (0x05) - MUX only

This command should be used to set active antennas on Pepper C1 MUX version used in polling mode. For MUX device
up to 8 antennas can be selected. As the parameter user need to pass the antenna mask. Each bit of this 1-byte
parameter represents the antenna number.

66

DN
Eccel....

Embedded RFID made simple

Bit number 7 6 5 4 3 P 1 0

Antenna humber 8 7 6 5 4 3 2 1

“1” means active, “0” inactive.

So, if all active antennas 11111111b = OxFF.

For ANT 1 and ANT3 -> 0000 0101b = 0x05

For ANT 1, ANT 2, ANT 3, ANT 4 -> 0000 1111b = OxOF

Command description

Argument Size | Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x05 Polling antenna subcommand

Selected antennas 1 X Active antenna mask
Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x05 Polling antenna subcommand

Example set command:

HOST=>C1: 0x16
0x05

POLLING_SETUP

Polling antennas subcommand ID
Oxff - A1l antennas are active

C1=>HOST: 0x00 - ACK byte
0x16 - Related command code POLLING_SETUP
0x05 Polling antennas subcommand ID

Example get command:

HOST=>C1l: 0x16 POLLING_SETUP

0x05 - Polling antennas subcommand ID
C1=>HOST: 0x00 - ACK byte

0x16 - POLLING_SETUP

Oxff - A1l antennas selected

10.1.24.7 Polling event packet (0x06)

With this command, the host can set up an asynchronous packet sent to the host for every UID event. An extra
argument describes type of the UID know (saved on the known tag list) or unknown.

Command description

Argument Size | Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x06 Polling event packet subcommand
0 - Known flag

Known/Unknow flag 1 X 1 Unknown flag

Type of the packet 1 X 0- None

67

S
Eccel...."

Embedded RFID made simple

1 —Binary frame

2 — Plain text

3 — JSON packet

4 — Custom text format frame

Response description

ACK 1 0x00
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x06 Polling event packet subcommand

Example set command:

HOST=>C1l: 0x16
0x06
0x01
0x01

Cl=>HOST: 0x00
0Ox16
0x06

Example get command:

HOST=>C1: 0x16
0x06

C1l=>HOST: 0x00
0x16
0x06
0x01
0x02

10.1.24.8 Polling LED event (0x07)

POLLING_SETUP
Polling event packet subcommand
Unknown flag
Binary frame format

ACK byte

related command code POLLING_SETUP
Polling event packet subcommand

POLLING_SETUP
Polling event packet subcommand

ACK byte

POLLING_SETUP
Polling event packet subcommand

binary frame sent when known tag is detected
plain text frame sent when unknown tag is detected

With this command, the host can set up an LED colour for every UID event. An extra argument describes type of the
UID know (saved on the known tag list) or unknown.

Command description

Argument Size | Value Description
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x07 Polling LED event subcommand
0 - Known flag
Known/Unknow flag 1 X 1 Unknown flag
0—None
1-Red
LED colour 1 X 2 —Green
3 —Blue
4 — White

68

S
Eccel...."

Embedded RFID made simple

Response description

ACK 1 0x00
Command ID 1 Ox16 POLLING_SETUP
Subcommand ID 1 0x07 Polling LED event subcommand

Example set command:

HOST=>C1l: 0x16
0x07
0x01
0x01

Cl=>HOST: 0x00
0x16
0x07

Example get command:

HOST=>C1l: 0x16
0x07
Cl=>HOST: 0x00
0x16
0x07
0x01
0x02

POLLING_SETUP
Polling LED event subcommand
Unknown flag
Red colour
ACK byte
related command code POLLING_SETUP
Polling LED event subcommand

POLLING_SETUP
Polling LED event subcommand
ACK byte
POLLING_SETUP
Polling LED event subcommand
Red led for known tag

Green led for unknown tag

10.1.24.9 Polling GPIO event (0x08)

With this command, the host can set up an GPIO event for every UID event. An extra argument describes type of the

UID know (saved on the known tag list) or unknown.

Command description

Argument Size | Value Description

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x08 Polling GPIO event subcommand

0 - Known flag

Known/Unknow flag 1 X 1 Unknown flag

GPIO number 1 X GPIO number on the J1 header (in HEX format)

GPIO event type 1 X 0 —toggle low, 1 —toggle high
Response description

ACK 1 0x00

Command ID 1 0x16 POLLING_SETUP

Subcommand ID 1 0x08 Polling GPIO event subcommand

Example set command:

HOST=>C1l: 0x16
0x08
0x01
0x20
0x00

Cl=>HOST: 0x00

POLLING_SETUP
Polling GPIO event subcommand
Unknown flag
GPIO 32
Toggle Tow
ACK byte

69

N

il 2
1
X
Eccelw chnology Ltd
c

Embedded RFID made simple

0x16
0x08

Example get command:

HOST=>C1: 0x16
0x08
0x00
0x16
0x08
0x02
0x00
0x05
0x01

C1=>HOST:

10.1.24.10

related command code POLLING_SETUP
Polling GPIO event subcommand

POLLING_SETUP

Polling GPIO event subcommand
ACK byte

POLLING_SETUP

Polling GPIO event subcommand
Toggle GPIO 2 for known tag
Toggle low

Toggle GPIO 5 for known tag
Toggle high

Event duration (0x09)

With this command, the host can set the time for known or unknown LED and GPIO event.

Command description

Argument Size | Value Description
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 0x09 Polling event duration
0 - Known flag
Known/Unknow flag 1 X 1 Unknown flag
Timeout 2 X Timeout value in milliseconds as unsigned 16bit value
Response description
ACK 1 0x00
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x09 Polling event duration

Example set command:

HOST=>C1l: Ox16 - POLLING_SETUP
0x09 - Polling event duration subcommand ID
0x00 - Timeout set as 255ms

Oxff

0x00
0x16
0x09

C1=>HOST:

Example get command:

HOST=>C1l: 0x16

ACK byte
related command code POLLING_SETUP
Polling event duration subcommand ID

POLLING_SETUP

0x09 - pPolling event duration subcommand ID
C1=>HOST: 0x00 - ACK byte

Ox16 - POLLING_SETUP

0x09 - Polling event duration subcommand ID

Oxff 0x00 - timeout value for known event

Oxff 0x00 - timeout value for unknown event

70

N

E C c e I Technology Ltd
c

Embedded RFID made simple

10.1.24.11

Polling event custom text format (Ox0A)

With this command, the host can set custom frame text format for known and unknown events. The format has to be
transferred as ASCIl bytes as part of the setup frame (see examples below). If the command is executed without
arguments then the device returns current setup for known and unknown frames separated with byte 0x00. More
information about custom frame format are described in the chapter 9.1.5

Command description

Argument Size | Value Description
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 Ox0A Custom frame format subcommand

Known/Unknow flag

0—Known flag

1 X 1 - Unknown flag

Type of the packet

1 X Custom frame format as ASCII bytes

Response description

ACK 1 0x00
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 Ox0A Custom frame format subcommand

Example set command:

HOST=>C1l: 0x16 - POLLING_SETUP

C1=>HOST:

0x0A
0x01
0x55
0x43

0x00
0x16
0x0A

Example get command:

HOST=>C1:

C1=>HOST:

0x16
0x0A

0x00
0x16
0x0A

0Ox4B
0x3cC
0x00
0x3A
0x4cC

- Custom frame format subcommand

- Unknown fTlag

0x49 0x44 0x3A 0x20 Ox25 0x75 0x3C

0x52 Ox3E 0x3C 0Ox4C 0x46 Ox3E - Custom frame format
bytes ‘UID: %u<CR><LF>’

- ACK byte
- related command code POLLING_SETUP
— Custom frame format subcommand

— POLLING_SETUP
— Custom frame format subcommand

- ACK byte
— POLLING_SETUP
— Custom frame format subcommand

Ox4E Ox4F Ox57 Ox4E Ox3A 0x25 0x75
0x43 0x52 Ox3E Ox3C Ox4C Ox46 Ox3E
0x55 Ox4E Ox4B Ox4E Ox4F Ox57 Ox4E
0x25 0x75 0x3C 0x43 0x52 Ox3E 0x3C
0x46 Ox3E - ASCII bytes for Known and unknow format separated

with byte 0x00. In this example converted to ASCII bytes we have
KNOWN : %u<CR><LF> for known tag event and UNKNOWN:%u<CR><LF> for
unknown format frame

71

Eccel...."

Embedded RFID made simple

10.1.24.12 Known tags on all antennas (0x0B)

With this command the host can enable/disable flag “Known tags on all antennas” for MUX devices. Please read
chapter 9.1.6 for more information about this flag.

Command description

Argument Size | Value Description
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x0B Known tags on all antennas flag
0x00 — Disabled
Enable flag 1 X 0x01 — Enabled
Response description
ACK 1 0x00
Command ID 1 0x16 POLLING_SETUP
Subcommand ID 1 0x0B Known tags on all antennas flag

Example set command:

HOST=>Cl: 0Ox16 - POLLING_SETUP
0x0B - Known tags on all antennas flag
0x01 - set flag to true

C1l=>HOST: 0x00 - ACK byte
0x16 - related command code POLLING_SETUP
OxOB - Known tags on all antennas subcommand ID

Example get command:

HOST=>Cl: 0Ox16 - POLLING_SETUP
0Ox0OB - Known tags on all antennas subcommand ID

C1=>HOST: 0x00 - ACK byte
0x16 - POLLING_SETUP
0x0B - Known tags on all antennas subcommand ID
0x01 - enabled flag

10.1.25 Sleep setup (0x17)

This set of commands can be used to setup most of parameters for sleep configuration. The first byte is the subtype of
the frame. To get current settings, the host has to send this frame with a subcommand ID only. This command is
available for firmware version 2.54 and above.

10.1.25.1 Use light sleep (0x00)

When this option is enabled the device is using light sleep mode to reduce boot time after wake up to about 50ms
instead of 400ms in deep sleep mode. This settings is recommended if host application wake up device often.

72

S
Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value Description

Command ID 1 Ox17 SLEEP_SETUP

Subcommand ID 1 0x00 Light sleep subcommand ID

Light sleep mode 1 X 0x0 — disabled, 0x01 — enabled
Response description

ACK 1 0x00

Command ID 1 Ox17 SLEEP _SETUP

Subcommand ID 1 0x00 Light sleep subcommand ID

Example set command:

HOST=>C1l: Ox17
0x00
0x01

0x00
0x17
0x00

C1l=>HOST:

Example get command:

HOST=>C1l: 0x17

0x00
Cl=>HOST: 0x00
0x17
0x00
0x01
10.1.25.2

SLEEP_SETUP
Light sleep subcommand ID
Enable 1light sleep mode

ACK byte
related command code SLEEP_SETUP
Light sleep subcommand ID

SLEEP_SETUP
query supported technologies subcommand ID

ACK byte
SLEEP_SETUP
Light sleep subcommand ID
Light sleep mode enabled

Get tag command on boot (0x01)

For light sleep host can enable this option to execute GETTAG_COUNT command internally by device just after wake
up. When this option is enabled and device wake up from sleep mode ASYNC frame is sent to the host with number of
tags detected. Itis also useful to getinformation from the device when it is ready to receive any other UART commands.

Command description

Argument Size | Value Description
Command ID 1 0x17 SLEEP_SETUP
Subcommand ID 1 0x01 Execute GAT_TAG_COUNT on wake up subcommand ID
GET_TAG_COUNT flag 1 X 0x0 — disabled, 0x01 — enabled
Response description
ACK 1 0x00
Command ID 1 0x17 SLEEP _SETUP
Subcommand ID 1 0x01 Execute GAT_TAG_COUNT on wake up subcommand ID

Example set command:

HOST=>C1l: Ox17 - SLEEP_SETUP
0x01 - Execute GAT_TAG_COUNT on wake up subcommand ID
0x01 - Enable wake up command on wake up

73

\\\ ‘:.f‘v e <) 1
Eccel .. %

Embedded RFID made simple

C1l=>HOST: 0x00 - ACK byte
0x17 - related command code SLEEP _SETUP
0x01 - Execute GAT_TAG_COUNT on wake up subcommand ID

Example get command:

HOST=>C1l: Ox17 - SLEEP_SETUP
0x01 - Execute GAT_TAG_COUNT on wake up subcommand ID

C1=>HOST: 0x00 - ACK byte
0x17 - SLEEP_SETUP
0x01 - Execute GAT_TAG_COUNT on wake up subcommand ID
0x01 - GET_TAG_COUNT enabled on boot

10.1.25.3 No tag in range timeout (0x02)

User can specify the amount of second when device is active and then switch to sleep mode when no tags is in field.

Command description

Argument Size | Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x02 No tag in rage timeout subcommand ID

Tiemout 2 X Timeout value in seconds as unsigned 16bit value
Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x02 No tag in rage timeout subcommand ID

Example set command:

HOST=>C1l: Ox17 - SLEEP_SETUP
0x02 - No tag in rage timeout subcommand ID
OxFF 0x00 - Timeout value

C1=>HOST: 0x00 - ACK byte
0x17 - related command code SLEEP _SETUP
0x02 - No tag in rage timeout subcommand ID

Example get command:

HOST=>C1l: Ox17 SLEEP _SETUP
0x02 - No tag in rage timeout subcommand ID

C1=>HOST: 0x00 - ACK byte
0x17 - SLEEP_SETUP
0x02 - No tag 1in rage timeout subcommand ID
OxFF 0x00 - Timeout value

74

Eccel...."

Embedded RFID made simple

10.1.25.4 Enter sleep mode when tag is detected (0x03)

When this option is selected the device enter in to sleep mode when the tag is detected. This feature is working only
when internal polling is enabled.

Command description

Argument Size | Value Description
Command ID 1 0x17 SLEEP_SETUP
Subcommand ID 1 0x03 Enter sleep mode when tag detected subcommand ID
Enter sleep flag 1 X 0x0 — disabled, 0x01 — enabled
Response description
ACK 1 0x00
Command ID 1 0x17 SLEEP_SETUP
Subcommand ID 1 0x03 Enter sleep mode when tag detected subcommand ID

Example set command:

HOST=>C1l: Ox17

SLEEP_SETUP
0x03 Enter sleep mode when tag detected subcommand ID
0x01 - Enable wake up command on wake up

C1l=>HOST: 0x00 - ACK byte
0x17 - related command code SLEEP_SETUP
0x03 - Enter sleep mode when tag detected subcommand ID

Example get command:

HOST=>C1l: 0Ox17 SLEEP _SETUP
0x03 - Enter sleep mode when tag detected subcommand ID

C1=>HOST: 0x00 - ACK byte
0x17 SLEEP_SETUP
0x03 - Enter sleep mode when tag detected subcommand ID
0x01 - GET_TAG_COUNT enabled on boot

10.1.25.5 Use LPCD in light sleep (0x04)

LPCD (Low Power Card Detection) is a built-in RFID chip functionality that allows the detection of tags when the reader
MCU is still in light sleep mode. This is an extremely useful feature if you want to save energy in sleep mode but still
detect the tag when it appears in the range of the antenna.

Command description

Argument Size | Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x04 LPCD enable subcommand ID

Enter sleep flag 1 X 0x0 — disabled, 0x01 — enabled
Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x04 LPCD enable subcommand ID

75

N

< ak
e <Ny
1
X
E C c e I Technology Ltd
c

Embedded RFID made simple

Example set command:

HOST=>C1: Ox17
0x04
0x01

Cl=>HOST: 0x00
0Ox17
0x04

Example get command:

HOST=>C1l: Ox17
0x04

Cl=>HOST: 0x00
0x17
0x04
0x01

SLEEP_SETUP
LPCD enable subcommand ID
Enable LPCD

ACK byte
related command code SLEEP_SETUP
LPCD enable subcommand ID

SLEEP _SETUP
LPCD enable subcommand ID

ACK byte

SLEEP_SETUP

LPCD enable subcommand ID
LPCD enabled

10.1.25.6 LPCD polling timeout (0x05)

This timeout can be used to wake up device from sleep mode. Timeout should be specified in seconds.

Command description

Argument Size | Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x05 LPCD timeout subcommand ID

Timer value 2 X Timeout value in seconds as unsigned 16bit value
Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x05 LPCD timeout subcommand ID

Example set command:

HOST=>C1l: Ox17
0x05
0x00

Cl=>HOST: 0x00
0Ox17
0x05

Example get command:

HOST=>C1l: Ox17
0x05

Cl=>HOST: 0x00
0x17
0x05
0x00

SLEEP_SETUP
LPCD timeout subcommand ID

OXFF - Timer value

ACK byte
related command code SLEEP_SETUP
LPCD timeout subcommand ID

SLEEP _SETUP
LPCD timeout subcommand ID

ACK byte
SLEEP_SETUP
LPCD timeout subcommand ID

OXFF - timeout value

76

S
Eccel...."

Embedded RFID made simple

10.1.25.7 Wake up timer (0x06)

This timeout can be used to wake up device from sleep mode. Timeout should be specified in seconds.

Command description

Argument Size | Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x06 Wake up timer subcommand ID

Timer value 2 X Timeout value in seconds as unsigned 16bit value
Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x06 Wake up timer subcommand ID

Example set command:

HOST=>C1l: Ox17 - SLEEP_SETUP
0x06 - wake up timer subcommand ID
0x00 OxFF - Timer value

C1l=>HOST: 0x00 - ACK byte
0x17 - related command code SLEEP_SETUP
0x06 - wake up timer subcommand ID

Example get command:

HOST=>Cl: Ox17 - SLEEP _SETUP
0x06 - wake up timer subcommand ID

C1=>HOST: 0x00 - ACK byte
0x17 - SLEEP_SETUP
0x06 — wake up timer subcommand ID
0x00 OxFF - timeout value

10.1.25.8 Wake up triggers (0x07)

This command should be used to specify the triggers used to wake up device. The host can specify two triggers and
this can be:

0x00 - Disabled

0x01 - UART2 RX pulse

0x02 - Button press

0x03 - GPIO2/4 set to low (GPIO4 for hardware vl, and GPIO4 for hardware v2)
0x04 - GPIO2/4 set to low (GPIO4 for hardware vl, and GPIO4 for hardware v2)

77

S
Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value Description

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x07 Wake up trigger subcommand ID

Trigger number 1 X Trigger number O or 1

Trigger type 1 X Trigger type as described above
Response description

ACK 1 0x00

Command ID 1 0x17 SLEEP_SETUP

Subcommand ID 1 0x07 Wake up trigger subcommand ID

Example set command:

HOST=>C1l: Ox17 — SLEEP_SETUP
0x07 - wake up trigger subcommand ID
0x00 0x01 - Triger #1 set as UART2 pulse

C1=>HOST: 0x00 - ACK byte
0x17 related command code POLLING_SETUP
0x07 - wake up trigger subcommand ID

Example get command:

HOST=>C1l: 0Ox17 SLEEP _SETUP
0x07 - wake up trigger subcommand ID

C1=>HOST: 0x00 - ACK byte
0x17 SLEEP_SETUP
0x07 - wake up trigger subcommand ID

0x01 - Trigger #1 set to UART2 byte
0x00 - Trigger #2 disabled
10.1.26 LOG forwarding (OxE4)

This command should be used to enable log forwarding over binary protocol. When forwarding is enabled then all
console logs are forwarded to binary protocol interfaces (UART or TCP). This command does not require any ACK from
host and device side. Console data contains bytes used to set colour in terminal (bytes compatible with Posix console)

Command description

Argument Size | Value Description
Command ID 1 OxE4 Log forwarding
1-Enable
Data 1 X 0 — Disable
Response description
ACK 1 0x00
Command ID 1 OxE4 BT data

78

D
Eccel....

Embedded RFID made simple

Example:
HOST=>C1l: OxE4 - LOG forwarding
0x01 - Logs enabled
C1=>HOST: OxE4 - LOG forwarding frame

E4 1B 5B 30 3B 33 32 6D 49 20 28 33 35 34 30 37 38 34 29 20 62 69 6E
61 72 79 5F 63 6D 64 3A 20 4C 6F 67 20 66 6F 72 77 61 72 64 69 6E 67
20 65 6E 61 62 6C 65 64 1B 5B 30 6D OA - console data

79

Eccel.... %

Embedded RFID made simple

10.2 MIFARE Classics commands

This set of commands should be performed on MIFARE Classics tags.

10.2.1 Read block (0x20)

The read block command should be used to read data from the tag. It takes as arguments the block number of the first
block to read, the number of blocks to read, the key A or B parameter, and the key number in key storage. The returned
ACK answer contains data read from the specified tag memory. The number of bytes of this data is MIFARE Classic
block size (16) multiplied by the number of blocks to be read.

Command description

Argument Size | Value | Description

Command ID 1 0x20 | MF_READ_BLOCK

Block number 1 X

Number of blocks 1 Y

Key A/B parameter 1 X 0x0A — Key A should be selected from key storage

0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
Response description

ACK 1 0x00
Command ID 1 0x20 | MF_READ_BLOCK
Read data v*16 | xxx Byte§ rt.ead from the tag. Number of bytes is number of requested blocks
multiplied by 16.
Example:

HOST=>C1l: 0x20 - MF_READ_BLOCK
0x02 - block number 2
0x02 - two blocks to read
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

C1=>HOST: 0x00 - ACK byte
0x20 - related command code MF_READ_BLOCK

0x01 Ox2e 0Ox41 0x22 0x43 Ox11l Ox8e 0x20
0x31 0x38 0x20 0x32 0x30 Ox31 0x39 0x41
0x81 0x23 0x42 0x28 0x33 0x01 Ox8e 0x72
0x31 0x35 O0x3a 0x33 0x35 0x3a 0x30 0x33 - 32 bytes result

10.2.2 Write block (0x21)
The write block command should be used to write data to the tag. It takes as arguments the block number of the first

block to write, the number of blocks to write, the key A or B parameter, the key number in key storage, and the bytes
to be written. The number of bytes to be written must be exactly the number of blocks to write multiplied by 16.

80

D
Eccel....

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 0x21 | MF_WRITE_BLOCK
Block number 1 X
Number of blocks 1 Y
0x0A — Key A should be selected from key storage
G Y TS 1 X 0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
. Bytes to write. Number of this bytes must be number of requested
*
Bytes to write Y716 | XXX 1 b ocks multiplied by 16.
Response description
ACK 1 0x00
Command ID 1 0x21 | MF_WRITE_BLOCK
Example:
HOST=>C1l: 0x21 - MF_WRITE_BLOCK
0x02 - block number 2
0x02 - two blocks to write
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage
0x01 Ox2e 0x41 0x22 0x43 0x11l Ox8e 0x20
0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
0x81 0x23 0x42 0x28 0x33 0x01 Ox8e 0x72
0x31 0x35 Ox3a 0x33 0x35 O0x3a 0x30 0x33 - 32 bytes to write
C1=>HOST: 0x00 - ACK byte

0x21 - related command code MF_WRITE_BLOCK

10.2.3 Read value (0x22)

This command should be used to read a value from the tag. It takes as arguments the block number where the value
is stored, the key A or B parameter, and the key number in key storage. The returned ACK response contains a value
as a signed 32-bit value (LSB first) and an address byte as an unsigned 8bit value.

Command description

Argument Size | Value | Description
Command ID 1 0x22 | MF_READ_VALUE
Block number 1 X

0x0A — Key A should be selected from key storage
el ELET S ! X 0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage

Response description

ACK 1 0x00
Command ID 1 0x22 | MF_READ_VALUE
Value 4 X Signed 32-bit value (LSB first)
Address 1 X Address byte

81

N

il 2
1
Eccelw chnology Ltd
c

Embedded RFID made simple

Example:

HOST=>C1:

C1=>HOST:

0x22
0x02
0x0A
0x00

0x00
0x22 -
0x00

10.2.4 Write value (0x23)

This command should be used to write a value to the tag. It takes as arguments the block number where the value
should be stored, the key A or B parameter, the key number in key storage, a value (signed 32-bit LSB first) as 4 bytes,

- MF_READ_VALUE

- block number 2

- key A should be selected from key storage

- first key should be selected from key storage

- ACK byte

related command code MF_READ_BLOCK
0x00 0x00 0x01 - value
0x01 - address byte

and an address byte (unsigned 8-bit value).

Command description

Argument Size | Value | Description
Command ID 1 0x23 | MF_WRITE_VALUE
Block number 1 X
0x0A — Key A should be selected from key storage
G D PRI SE ! X 0x0B — Ke:// B should be selected from ke;I storage
Key number 1 0-4 | Key number in key storage
Value 4 X Signed 32-bit value (LSB first)
Address 1 X Address byte
Response description
ACK 1 0x00
Command ID 1 0x23 | MF_WRITE_VALUE
Example:
HOST=>C1l: 0Ox23 - MF_WRITE_VALUE
0x02 - block number 2
Ox0A - key A should be selected from key storage
0x00 - first key should be selected from key storage
0x00 0x00 0x00 0x01 - value
0x01 - address byte
C1l=>HOST: 0x00 - ACK byte

0x23 - related command code MF_WRITE_BLOCK

10.2.5 Increment/decrement value (0x24)

This command should be used to increment or decrement a value stored in the tag memory. It takes as arguments the
block number where the value is stored, the key A or B parameter, the key number in key storage, value (signed 32-

bit LSB first) as 4 bytes to increment or decrement, and the increment/decrement flag.

82

D
Eccel....’

Embedded RFID made simple

Command description
Argument Size | Value | Description
Command ID 1 0x24 | MF_INCREMENT_VALUE
Block number 1 X
0x0A — Key A should be selected from key storage
G R ! X 0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
Delta value 4 X Signed 32-bit value (LSB first)
0x00 — Decrement by delta value
EEEE 1 X 0x01 — Increment by delta value
Response description
ACK 1 0x00
Command ID 1 0x24 | MF_INCREMENT_VALUE
Example:

HOST=>C1: 0x24 - MF_INCREMENT_VALUE
0x02 - block number 2
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage
0x00 0x00 0x00 0x01 - delta value
0x01 - 1increment flag

C1l=>HOST: 0x00 - ACK byte
0x24 - related command code MF_INCREMENT_BLOCK

10.2.6 Transfer value (0x25)

This command should be used to transfer a value from a volatile register on the tag to the block being addressed. It
takes as arguments the block number where the value should be stored, the key A or B parameter, the key number in
key storage.

Command description
Argument Size | Value | Description
Command ID 1 0x25 | MF_TRANSFER_VALUE
Block number 1 X
0x0A — Key A should be selected from key storage
el LR ! X 0x0B — Ke;// B should be selected from ke\\// storage
Key number 1 0-4 | Key number in key storage
Response description
ACK 1 0x00
Command ID 1 0x25 | MF_TRANSFER_VALUE
Example:
HOST=>C1l: Ox25 - MF_TRANSFER_VALUE
0x02 - block number 2
O0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

83

N
Eccel.... %

150 9001
Embedded RFID made simple Certificate No. GB2005225

C1l=>HOST: 0x00 - ACK byte
0x25 - related command code MF_TRANSFER_BLOCK

10.2.7 Restore value (0x26)

This command should be used to restore a value to a volatile register on the tag from the block being addressed. It
takes as arguments the block number where the value is stored, the key A or B parameter, key number in key storage.

Command description

Argument Size | Value | Description
Command ID 1 0x26 | MF_RESTORE_VALUE
Block number 1 X

0x0A — Key A should be selected from key storage
0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage
Response description

Key A/B parameter 1 X

ACK 1 0x00
Command ID 1 0x26 | MF_RESTORE _VALUE
Example:

HOST=>Cl: 0Ox26 - MF_RESTORE_VALUE

0x02 - block number 2
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

C1=>HOST: 0x00 - ACK byte
0x26 - related command code MF_RESTORE_BLOCK

10.2.8 Transfer-Restore value (0x27)

This command performs a Restore-Transfer command sequence on the tag. It takes as arguments the block number
to be decremented, the block number to be transferred to, the key A or B parameter, the key number in key storage.
This command has the same functionality as the read value command, except that it can be used on a block which is
corrupted — it tries to recover data from a corrupted block. The format of a value-type block allows for some bits to be
corrupted and it still be possible to read and recover the proper value

Command description

Argument Size | Value | Description
Command ID 1 0x27 | MF_TRANSFER_RESTORE_VALUE
Source block number 1 X Block number to be decremented
Destination block 1 X Block number to be transferred to
number
0x0A — Key A should be selected from key storage
Sl LR 1 X 0x0B — Key B should be selected from key storage
Key number 1 0-4 | Key number in key storage

84

N

Eccel....’
Response description
ACK 1 0x00
Command ID 1 0x27 | MF_TRANSFER_RESTORE _VALUE
Example:

HOST=>C1: Ox27 - MF_TRANSFER_RESTORE_VALUE
0x02 - source block number 2
0x03 - destination block number 3
0x0A - key A should be selected from key storage
0x00 - first key should be selected from key storage

C1=>HOST: 0x00 - ACK byte
0x27 - related command code MF_TRANSFER_RESTORE_BLOCK

10.3 MIFARE Ultralight commands

This set of commands should be performed on MIFARE Ultralight tags.

10.3.1 Read page (0x40)

The read page command should be used to read data stored in tag pages. It takes as arguments the page number of
the first page to be read, and the number of pages to be read. The returned ACK answer contains data read from the
specified tag memory. The number of bytes of this data is MIFARE Ultralight page size (4) multiplied by the number of
pages to be read.

Command description

Argument Size | Value | Description
Command ID 1 0x40 | MFU_READ_PAGE
Page number 1 X
Number of pages 1 Y
Response description
ACK 1 0x00
Command ID 1 0x40 | MFU_READ_PAGE
Read data vea | xxx Byte§ rt::'ad from the tag. Number of bytes is number of requested pages
multiplied by 4.
Example:

HOST=>C1: 0x40
0x02
0x02

MFU_READ_PAGE
page number 2
two pages to read

C1=>HOST: 0x00 - ACK byte
0x40 - related command code MFU_READ_PAGE
0x31 0x35 Ox3a 0x33 0x35 O0x3a 0x30 0x33 - 8 bytes result

85

N

ol
C c e ' T i
E fechnology Ltd

Embedded RFID made simple

10.3.2 Write page (0x41)

The write page command should be used to write data to the tag. It takes as arguments the page number of the first
page to write, the number of pages to write, and the bytes to be written. The number of bytes to be written must be
exactly the number of pages to write multiplied by 4.

Command description

Argument Size | Value | Description
Command ID 1 0x41 | MFU_WRITE_PAGE
Page number 1 X
Number of pages 1 Y
Bytes to write vea | xxx Byte§ tg write. Number of this bytes must be number of requested pages
multiplied by 4.
Response description
ACK 1 0x00
Command ID 1 0x41 | MFU_WRITE_PAGE
Example:
HOST=>Cl: Ox41 - MFU_WRITE_PAGE
0x02 - page number 2
0x02 - two pages to write
0x31 0x35 O0x3a 0x33 0x35 O0x3a 0x30 0x33 - 32 bytes to write
C1l=>HOST: 0x00 - ACK byte

0x41 - related command code MFU_WRITE_PAGE

10.3.3 Get version (0x42)

This command requests a version string from the TAG. The returned ACK answer consists of 8-bytes containing the
version information defined by the NXP standard. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 0x42 | MFU_GET_VERSION
Response description

ACK 1 0x00

Command ID 1 0x42 | MFU_GET_VERSION

Version bytes 8 X Version bytes from the TAG

Example:

HOST=>C1:
C1=>HOST:

0x42 - MFU_GET_VERSION

0x00 - ACK byte
0x42 - related command code MFU_GET_VERSION
0x31 0x35 O0x3a 0x33 0x35 0x3a 0x30 0x33 - version bytes

86

Eccel...."

Embedded RFID made simple

10.3.4 Read signature (0x43)

This command requests a version string from the device. The returned ACK answer contains 32-bytes with ECC
signature defined by the NXP standard. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description
Command ID 1 0x43 | MFU_READ_SIGNATURE
Response description
ACK 1 0x00
Command ID 1 0x43 | MFU_READ_SIGNATURE
Version bytes 32 X Signature bytes from the TAG
Example:

HOST=>C1l: O0x43 - MFU_READ_SIGNATURE

C1=>HOST: 0x00 - ACK byte
0x43 - related command code MFU_READ_SIGNATURE
0x01 Ox2e 0Ox41 0x22 0x43 0x11 Ox8e 0x20
0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
0x81 0x23 0x42 0x28 0x33 0Ox01 Ox8e 0x72
0x31 0x35 Ox3a 0x33 0x35 O0x3a 0x30 0x33 - signature bytes

10.3.5 Write signature (0x44)

This command writes the signature information to the MIFARE Ultralight Nano TAG. It takes as arguments relative page
location of the signature part to be written and four bytes of signature value to be written.

Command description

Argument Size | Value | Description
Command ID 1 0x44 | MFU_WRITE_SIGNATURE
Relative page address 1 X Relative page location of the signature part to be written
Bytes to write 4 XXX Bytes of signature value to be written to the specified relative page
address
Response description
ACK 1 0x00
Command ID 1 0x44 | MFU_WRITE_ SIGNATURE
Example:

HOST=>C1l: 0Ox44 - MFU_WRITE_SIGNATURE
0x00 - relative page number 0
0x35 0x3a 0x30 0x33 - 4 bytes to write

C1=>HOST: 0x00 - ACK byte
0x44 - related command code MFU_WRITE_SIGNATURE

87

Eccel...."

Embedded RFID made simple

10.3.6 Lock signature (0x45)

This command locks the signature temporarily or permanently based on the information provided in the API. The
locking and unlocking of the signature can be performed using this command if the signature is not locked or temporary
locked. If the signature is permanently locked, then unlocking can’t be done.

Command description

Argument Size | Value | Description

Command ID 1 0x45 | MFU_LOCK_SIGNATURE
0x00 — Unlock

Lock mode 1 X 0x01 — Lock

0x02 — Permanent lock
Response description

ACK 1 0x00
Command ID 1 0x45 | MFU_LOCK_SIGNATURE
Example:

HOST=>C1l: 0x45
0x02

MFU_LOCK_SIGNATURE
permanent lock

Cl=>HOST: 0x00
0x45

ACK byte
related command code MFU_LOCK_SIGNATURE

10.3.7 Read counter (0x46)

This command should be used to read a counter from the TAG. It takes as arguments the counter number. The returned
ACK response contains a value as a signed 24-bit value (LSB first).

Command description

Argument Size | Value | Description

Command ID 1 0x46 | MFU_READ_COUNTER

Counter number 1 0-2 | Counter number

Response description

ACK 1 0x00

Command ID 1 0x46 | MFU_READ_COUNTER

Counter value 3 X Unsigned 24-bit value, LSB first
Example:

HOST=>C1l: 0Ox46
0x01

MFU_READ_COUNTER
counter number

C1=>HOST: 0x00 - ACK byte
0x46 - related command code MFU_READ_COUNTER
0x00 0x00 0x01 - value

88

N

E C c e I Technology Ltd
c

Embedded RFID made simple

10.3.8 Increment counter (0x47)

This command should be used to increment a counter stored in the tag memory. It takes as arguments the counter
number and increment value (24-bit value LSB first) as 3 bytes.

Command description

Argument Size | Value | Description

Command ID 1 0x47 | MFU_INCREMENT_COUNTER
Counter number 1 0-2 | Counter number

Increment value 3 X Unsigned 24-bit value (LSB first)

Response description

ACK 1 0x00
Command ID 1 0x47 | MFU_INCREMENT_COUNTER
Example:

HOST=>C1l: Ox47 - MFU_INCREMENT_COUNTER

0x02 - block number 2
0x00 0x00 0x01 - increment value

C1l=>HOST: 0x00 - ACK byte

0x47 - related command code MFU_INCREMENT_COUNTER

10.3.9 Password auth (0x48)

This command tries to authenticate the tag using the chosen password. It takes as an argument a password as four
bytes. The returned ACK response contains two bytes of password acknowledge (PACK).

Command description

Argument

Size | Value | Description

Command ID

1 0x48 | MFU_PASSWORD_AUTH

Counter number

4 X 4-bytes password

Response description

ACK 1 0x00
Command ID 1 0x48 | MFU_PASSWORD_AUTH
PACK 2 X Password acknowledge bytes
Example:
HOST=>C1l: 0x48 - MFU_PASSWORD_AUTH
0x00 0x00 0x00 0x00 - password
C1=>HOST: 0x00 - ACK byte

0x48 - related command code MFU_PASSWORD_AUTH
0x00 0x00 - password acknowledge bytes

89

D
Eccel....

Embedded RFID made simple

9001
Certificte No. GB200S225

10.3.10 Ultralight-C authenticate (0x49)

This command tries to authenticate the MIFARE Ultralight-C tag using the password stored in the key storage. It takes
as an argument one byte with the key number in the key storage.

Command description
Argument Size | Value | Description
Command ID 1 0x49 | MFUC_AUTHENTICATE
Key number 1 0-4 | Key number in key storage
Response description
ACK 1 0x00
Command ID 1 0x49 | MFUC_AUTHENTICATE
Example:
HOST=>C1l: 0x49 - MFUC_AUTHENTICATE
0x00 - key number
C1=>HOST: 0x00 - ACK byte
0x49 - related command code MFUC_AUTHENTICATE
10.3.11 Check Tearing Event (0x4A)

The Check Tearing Event command takes as arguments one byte with the counter number. This command checks
whether there was a tearing event in the counter. The returned ACK response contains result byte. The value ‘Ox00’ is
returned if there has been no tearing event, and ‘Ox01’ is returned if a tearing event occurred. Please refer to the NXP
documentation for more information.

Command description

Argument Size | Value | Description
Command ID 1 0x49 | MFU_CHECKEVENT
Counter number 1 0-2 | Counter number
Response description
ACK 1 0x00
Command ID 1 0x49 | MFU_CHECKEVENT
Example:
HOST=>C1l: 0x49 - MFU_CHECKEVENT
0x00 - counter number
C1=>HOST: 0x00 - ACK byte
0x49 - related command code MFU_CHECKEVENT
0x01 - tearing event occurred

90

S
Eccel...."

Embedded RFID made simple

10.4 MIFARE DESFire commands

This set of commands should be performed on MIFARE DESFire tags.

10.4.1 Get version (0x60)

This command requests version information from the tag. The returned ACK answer contains 28-bytes with version
information.

Command description

Argument Size | Value | Description
Command ID 1 0x60 | MFDF_GET_VERSION
Response description
ACK 1 0x00
Command ID 1 0x60 | MFDF_GET_VERSION
Read data 28 XXX | Version bytes read from the tag
Example:

HOST=>C1l: 0x60 - MFDF_GET_VERSION

C1l=>HOST: 0x00 - ACK byte
0x60 - related command code MFDF_GET_VERSION

0x01 Ox2e 0x41 0Ox22 0x43 0Ox11l Ox8e 0x20
0x31 0x38 0x20 0x32 0x30 0x31 0x39 0x41
0x81 0x23 0x42 0x28 0x33 0Ox01 Ox8e 0x72
0x31 0x35 Ox3a 0x33 - 28 bytes result

10.4.2 Select application (0x61)

This command requests select application operation on the tag. Takes as argument 3-byes containing AID.

Command description

Argument Size | Value | Description
Command ID 1 0x61 | MFDF_SELECT_APP
AID 3 X Application ID
Response description
ACK 1 0x00
Command ID 1 0x61 | MFDF_SELECT_APP
Example:

HOST=>C1l: Ox61 - MFDF_SELECT_APP
0x01 0x02 0x03 - 3 bytes AID

C1=>HOST: 0x00 - ACK byte
0x61 - related command code MFDF_SELECT_APP

91

S
Eccel...."

Embedded RFID made simple

10.4.3 List application IDs (0x62)

This command requests lists application IDs from the TAG. The returned ACK answer contains the bytes with
application IDs. Every ID is 3-bytes long.

Command description

Argument Size | Value | Description
Command ID 1 0x62 | MFDF_LIST_APP_IDS
Response description
ACK 1 0x00
Command ID 1 0x62 | MFDF_LIST_APP_IDS
Application IDs X*3 X Bytes with applications IDs
Example:

HOST=>C1l: Ox62 - MFDF_LIST_APP_IDS

C1=>HOST: 0x00 - ACK byte
0x62 - related command code MFDF_LIST_APP_IDS
0x00 0x00 0x01 - first AID
OxAA 0xBB OxCC - second AID
0x55 0x55 0x55 - third AID

10.4.4 List files IDs (0x63)

This command returns the file IDs of all active files within the currently selected application. The returned ACK answer
contains the bytes with file IDs. Every file ID is 3-bytes long.

Command description

Argument Size | Value | Description
Command ID 1 0x63 | MFDF_LIST_FILE_IDS
Response description
ACK 1 0x00
Command ID 1 0x63 | MFDF_LIST_FILE_IDS
Application IDs X*3 X Bytes with files IDs
Example:

HOST=>C1l: 0x63

MFDF_LIST_FILE_IDS

C1=>HOST: 0x00 - ACK byte
0x63 - related command code MFDF_LIST_FILE_IDS
0x00 0x00 0x01 - first file ID
OxAA OxBB 0OxCC - second file ID
0x55 O0x55 0x55 - third file ID

92

Eccel...."

Embedded RFID made simple

10.4.5 Authenticate (0x64)

This command tries to authenticate the MIFARE DESFire using the password stored in the key storage. It takes as an
argument one byte with the key number in the key storage, and one byte with the key number on the card. This
command can be used with DES and 2K3DES keys.

Command description

Argument Size | Value | Description

Command ID 1 0x64 | MFDF_AUTHENTICATE

Key number in storage 1 0-4 | Key number in key storage

Key number on card 1 X Key number on card
Response description

ACK 1 0x00

Command ID 1 0x64 | MFDF_AUTHENTICATE

Example:

HOST=>C1l: 0Ox64
0x01
0x00

MFDF_AUTHENTICATE
key number in key storage
key number on the card

Cl=>HOST: 0x00
0x64

ACK byte
related command code MFDF_AUTHENTICATE

10.4.6 Authenticate ISO (0x65)

This command tries to authenticate the MIFARE DESFire tag in ISO CBS send mode using the key stored in the key
storage. It takes as an argument one byte with the key number in the key storage, and one byte with the key number
on the card. This command can be used with DES, 3DES and 3K3DES keys.

Command description

Argument Size | Value | Description

Command ID 1 0x65 | MFDF_AUTHENTICATE_ISO

Key number 1 0-4 | Key number in key storage

Key number on card 1 X Key number on card
Response description

ACK 1 0x00

Command ID 1 0x65 | MFDF_AUTHENTICATE_ISO

Example:

HOST=>C1l: Ox65
0x01
0x00

MFDF_AUTHENTICATE_ISO
key number in key storage
key number on the card

Cl=>HOST: 0x00
0x65

ACK byte
related command code MFDF_AUTHENTICATE_ISO

93

DN
Eccel.... -

Embedded RFID made simple Certificate No. GB2005225

10.4.7 Authenticate AES (0x66)

This command tries to authenticate the MIFARE DESFire using the key stored in the key storage, and one byte with the
key number on the card. It takes as an argument one byte with the key number in the key storage. This command can
be used with AES128 keys.

Command description

Argument Size | Value | Description

Command ID 1 0x66 | MFDF_AUTHENTICATE_ISO

Key number 1 0-4 | Key number in key storage

Key number on card 1 X Key number on card
Response description

ACK 1 0x00

Command ID 1 0x66 | MFDF_AUTHENTICATE_ISO

Example:

HOST=>C1l: 0x66
0x01
0x00

MFDF_AUTHENTICATE_AES
key number in key storage
key number on the card

Cl=>HOST: 0x00
0x66

ACK byte
related command code MFDF_AUTHENTICATE_AES

10.4.8 Create application (0x67)

This command tries to create application on the tag. It takes three arguments: 3-bytes of application ID, the
keySettings1 byte and the keySettings2 byte. Please refer to the NXP documentation for more information about key
settings bytes.

Command description

Argument Size | Value | Description

Command ID 1 0x67 | MFDF_CREATE_APP

Application ID 3 X Application ID bytes

Key settings 1 1 X Please refer to the NXP documentation for more information
Key settings 2 1 X Please refer to the NXP documentation for more information

Response description

ACK 1 0x00
Command ID 1 0x67 | MFDF_CREATE_APP
Example:

HOST=>Cl: 0Ox67 - MFDF_CREATE_APP
0x00 - key number
0x01 0x02 0x03 - application ID
OXED 0x84 - key settings bytes
C1=>HOST: 0x00 - ACK byte
0x67 - related command code MFDF_CREATE_APP

94

S
Eccel...."

Embedded RFID made simple

10.4.9 Delete application (0x68)

This command tries to delete an application from the tag. It takes one argument with the application ID.

Command description

Argument Size | Value | Description
Command ID 1 0x68 | MFDF_DELETE_APP
Application ID 3 X Application ID bytes
Response description
ACK 1 0x00
Command ID 1 0x68 | MFDF_DELETE_APP
Example:

HOST=>C1l: Ox68 - MFDF_DELETE_APP
0x01 0x02 0x03 - application ID
C1=>HOST: 0x00 - ACK byte
0x68 - related command code MFDF_DELETE_APP

10.4.10 Change key (0x69)

This command tries to change the key for the selected application. It takes three arguments: the old key number from
key storage, the new key number in the key storage and the key number on the card. The key type of the application
keys cannot be changed.

Command description
Argument Size | Value | Description
Command ID 1 0x69 | MFDF_CHANGE_KEY
Old key number 1 0-4 | Key number in key storage
New key number 1 0-4 | Key number in key storage
Key number on card 1 X Key number on the card
Response description
ACK 1 0x00
Command ID 1 0x69 | MFDF_CHANGE_KEY
Example:
HOST=>C1l: 0x69 - MFDF_CHANGE_APP
0x00 - old key number
0x01 - new key number
0x00 - key number
C1=>HOST: 0x00 - ACK byte
0x69 - related command code MFDF_CHANGE_APP
104.11 Get key settings (Ox6A)

This command gets the key settings bytes from the tag. This command does not require any arguments but an
application must be selected and authorized. The first bytes is access rights and key settings bits, the second byte is
number of keys and type of authorization.

95

N

Eccel.... “:
Command description
Argument Size | Value | Description
Command ID 1 Ox6A | MFDF_GET_KEY_SETTINGS
Response description
ACK 1 0x00
Command ID 1 Ox6A | MFDF_GET_KEY_SETTINGS
Key settings 2 X Key settings bytes
Example:

HOST=>C1l: OX6A - MFDF_GET_KEY_SETTINGS

C1=>HOST: 0x00 - ACK byte
Ox6A - related command code MFDF_GET_KEY_SETTINGS
OXEF 0x84 - key settings bytes

10.4.12 Change key settings (0Ox6B)

This command changes the key settings bytes for the selected and authorized application. It takes one argument, 1-
byes long with access rights and key settings bits.

Command description

Argument Size | Value | Description
Command ID 1 0x6B | MFDF_CHANGE_KEY_SETTINGS
New key settings 1 X Key settings bytes
Response description
ACK 1 0x00
Command ID 1 0x6B | MFDF_CHANGE_KEY_SETTINGS
Example:

HOST=>C1l: Ox6B
OXEF

MFDF_GET_KEY_SETTINGS
key settings bytes

C1=>HOST: 0x00 - ACK byte
0Ox6B - related command code MFDF_GET_KEY_SETTINGS
10.4.13 Create standard or backup data file (0x6C)

This command creates a file for the storage of plain unformatted user data within the selected application. It takes
four arguments listed in the table below.

Command description
Argument Size | Value | Description
Command ID 1 0x6C | MFDF_CREATE_DATA_FILE
File number 1 X File number inside application
Access rights 2 X Please refer to the NXP documentation for more information
File size 3 X file size, LSB first
. 0x00 — Standard file
SEEIDLE 1 X 0x01 — Backup file

96

Eccel...."

Embedded RFID made simple

Communication mode:

0x00 — PLAIN
Comm mode 1 X 0x01 — MACD

0x02 - ENC

Response description
ACK 1 0x00
Command ID 1 0x6B | MFDF_CREATE_DATA_FILE
Example:

HOST=>C1l: Ox6C - MFDF_CREATE_DATA_FILE
0x01 - file number
OXEE OXEE - access rights
0x40 0x00 0x00 - file 64-bytes long
0x01 - backup file
0x00 - Plain mode

C1=>HOST: 0x00 - ACK byte
0x6C - related command code MFDF_CREATE_DATA_FILE

10.4.14 Write data (0x6D)

This command writes data to standard data files or backup data files. It takes three arguments: the file number, the
offset in the file where data should be stored, and the data bytes to be written. To store data on the TAG, a commit
transaction command is required.

Command description
Argument Size | Value | Description
Command ID 1 0x6D | MFDF_WRITE_DATA
File number 1 X File number inside application
File offset 3 X file offset, 3-bytes LSB value
Communication mode:
0x00 — PLAIN
Comm mode 1 X 0x01 = MACD
0x02 - ENC
Data N X Data bytes to write
Response description
ACK 1 0x00
Command ID 1 0x6D | MFDF_WRITE_DATA
Example:

HOST=>C1l: Ox6D - MFDF_WRITE_DATA

0x01 - file number

0x00 0x00 0x00 - zero offset

0x00 - Plain mode

0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data
C1=>HOST: 0x00 - ACK byte

0Ox6D - related command code MFDF_WRITE_DATA

97

]
Eccel.... .

509001
Embedded RFID made simple Certificate No. GB2005225

10.4.15 Read data (Ox6E)

This command reads data from standard data files or backup data files. It takes three arguments: the file number, the
offset in the file where data is stored, and the number of bytes to be read. The returned ACK response contains the
data that has been read.

Command description
Argument Size | Value | Description
Command ID 1 Ox6E | MFDF_READ_DATA
File number 1 X File number inside application
File offset 3 X file offset, 3-bytes LSB value
Data length 3 X Read data length, 3-bytes LSB value
Communication mode:
0x00 — PLAIN
Comm mode 1 X 0x01 — MACD
0x02 - ENC
Response description
ACK 1 0x00
Command ID 1 Ox6E | MFDF_READ_DATA
Example:

HOST=>C1l: OX6E - MFDF_READ_DATA
0x01 - file number
0x00 0x00 0x00 - zero offset
0x07 0x00 0Ox00 - seven bytes to read
0x00 - Plain mode
C1=>HOST: 0x00 - ACK byte
OX6E - related command code MFDF_READ_DATA
0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data

10.4.16 Create value file (Ox6F)

This command creates files for the storage and manipulation of 32bit signed integer values within an existing
application on the TAG. It takes seven arguments listed in the table below.

Command description

Argument Size | Value | Description

Command ID 1 Ox6F | MFDF_CREATE_VALUE_FILE

File number 1 X File number inside application

Access rights 2 X Please refer to the NXP documentation for more information
Low limit 4 X Low limit as 4-bytes signed value, LSB first

Up limit 4 X Up limit as 4-bytes signed value, LSB first

Initial value 4 X Initial value as 4-bytes signed value, LSB first

Get free enabled 1 X Please refer to the NXP documentation for more information
Limit credited 1 X Please refer to the NXP documentation for more information

Response description

98

N

ACK 1 0x00
Command ID 1 Ox6F | MFDF_CREATE_VALUE_FILE
Example:

HOST=>C1l: Ox6F — MFDF_CREATE_VALUE_FILE
0x02 - file number
OXEE OXEE - access rights
0x00 0x00 0x00 O0x00 - Tow Timit
0x80 0x00 0x00 0x00 - up 1limit
0x00 0x00 0x00 0x00 - initial value
0x01 - get free enabled
0x01 - Timited credit

C1=>HOST: 0x00 - ACK byte
OX6F - related command code MFDF_CREATE_VALUE_FILE
10.4.17 Get value (0x70)

This command returns the value stored in a value file on the TAG. The returned ACK response contains 4 bytes of
signed value, LSB-first.

Command description

Argument Size | Value | Description

Command ID 1 0x70 | MFDF_GET_VALUE

File number 1 X File number inside application

Response description

ACK 1 0x00

Command ID 1 0x70 | MFDF_GET_VALUE

Value 4 X 4 bytes signed value, LSB first
Example:

HOST=>C1l: 0x70
0x02

MFDF_GET_VALUE
file number

C1=>HOST: 0x00 - ACK byte
0x70 - related command code MFDF_GET_VALUE
0x05 0x00 0x00 O0x00 - 4 bytes signed value, LSB first

10.4.18 Credit file (0x71)

This command increases a value stored in a value file on the TAG.

Command description

Argument Size | Value | Description

Command ID 1 0x71 | MFDF_CREDIT

File number 1 X File number inside application
Credit value 4 X 4 bytes signed value, LSB first

Response description

99

N

Eccel......

ACK 1 0x00

Command ID 1 0x71 | MFDF_CREDIT
Example:

HOST=>C1l: Ox71 - MFDF_CREDIT
0x02 - file number
0x05 0x00 0x00 0x00 - 4 bytes signed value, LSB first

C1=>HOST: 0x00 - ACK byte
0x71 - related command code MFDF_CREDIT

10.4.19 Limited credit file (0x72)

This command allows a limited increase of a value stored in a value file without having full credit permissions to the
file. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 0x72 | MFDF_LIMITED_CREDIT

File number 1 X File number inside application

Credit value 4 X 4 bytes signed value, LSB first

Response description

ACK 1 0x00

Command ID 1 0x72 | MFDF_ LIMITED_CREDIT
Example:

HOST=>Cl: Ox72 - MFDF_LIMITED_CREDIT
0x02 - file number
0x05 0x00 0x00 0x00 - 4 bytes signed value, LSB first

C1=>HOST: 0x00 - ACK byte
0x72 - related command code MFDF_ LIMITED_CREDIT

10.4.20 Debit file (0x73)

This command decreases a value stored in a value file on the TAG.

Command description

Argument Size | Value | Description

Command ID 1 0x73 | MFDF_DEBIT

File number 1 X File number inside application

Credit value 4 X 4 bytes signed value, LSB first
Response description

ACK 1 0x00

Command ID 1 0x73 | MFDF_DEBIT

100

\\\ ‘:.f‘v e <) 1
Eccel .. %

Embedded RFID made simple

Example:

HOST=>C1l: Ox73 - MFDF_DEBIT
0x02 - file number
0x05 0x00 0x00 0x00 - 4 bytes signed value, LSB first

C1=>HOST: 0x00 - ACK byte
0x73 - related command code MFDF_DEBIT

10.4.21 Create record file (0x74)

This command creates files for multiple storage of structurally similar data within an existing application. If the cyclic
flag is 0x00, then further writing is not possible unless it is cleared. If the cyclic flag is set to 0x01, then the new record
overwrites the oldest record.

Command description

Argument Size | Value | Description
Command ID 1 0x74 | MFDF_CREATE_RECORD_FILE
File number 1 X File number inside application
Access rights 2 X Please refer to the NXP documentation for more information
Record size 2 X Record size, 16-bits LSB value
Number of records 2 X Number of records, 16-bits LSB value
X If cyclic file is full:

Cyclic flag 1 0x00 - further writing is not possible unless it is cleared
0x01 - the new record overwrites oldest record
Response description

ACK 1 0x00
Command ID 1 0x74 | MFDF_CREATE_RECORD_FILE
Example:

HOST=>C1l: Ox74 - MFDF_CREATE_RECORD_FILE
0x03 - file number
OXEE OXEE - access rights
0x08 0x00 - 8-bytes for every record
0x40 0x00 - 64 records
0x01 - cyclic flag

C1=>HOST: 0x00 - ACK byte
0x74 - related command code MFDF_CREATE_VALUE_FILE

10.4.22 Write record (0x75)

This command writes data to a record file. It takes two arguments: the file number and the data bytes to be written.
To store data on the TAG, a commit transaction command is required.

101

N

Eccel...."
Command description
Argument Size | Value | Description
Command ID 1 0x75 | MFDF_WRITE_RECORD_DATA
File number 1 X File number inside application
Data N X Data bytes to write
Response description
ACK 1 0x00
Command ID 1 0x75 | MFDF_WRITE_DATA
Example:
HOST=>C1l: Ox75 - MFDF_WRITE_DATA
0x01 - file number
0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data
C1l=>HOST: 0x00 - ACK byte
0x75 - related command code MFDF_WRITE_RECORD_DATA
10.4.23 Read record (0x76)

This command reads data from a record file. It takes three arguments: the file number, the record number, and the

number of bytes to be read. The returned ACK response contains the data that has been read.

Command description
Argument Size | Value | Description
Command ID 1 0x76 | MFDF_READ_RECORD
File number 1 X File number inside application
Record number 2 X Record number, 2-bytes LSB value
Data length 2 X Read data length, 2-bytes LSB value
Response description
ACK 0x00
Command ID 1 0x76 | MFDF_READ_RECORD
Example:
HOST=>C1l: Ox76 - MFDF_READ_RECORD
0x01 - file number
0x00 0x01 - record number
0x08 0x00 - eighth bytes to read
C1=>HOST: 0x00 - ACK byte
0x76 - related command code MFDF_READ_RECORD
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 - data
10.4.24 Clear records (0x77)

This command resets cyclic or lineal record files. It takes as an argument the file number.

102

N

Eccel.... -
Command description
Argument Size | Value | Description
Command ID 1 0x77 | MFDF_CLEAR_RECORDS
File number 1 X File number inside application
Response description
ACK 1 0x00
Command ID 1 0x77 | MFDF_CLEAR_RECORDS
Example:

HOST=>C1: Ox77
0x01

MFDF_CLEAR_RECORDS
file number

C1l=>HOST: 0x00 - ACK byte
0x77 - related command code MFDF_CLEAR_RECORDS
10.4.25 Delete file (0x78)

This command permanently deactivates a file within the file directory of the currently selected application. It takes as
an argument the file number.

Command description

Argument Size | Value | Description
Command ID 1 0x78 | MFDF_DELETE_FILE
File number 1 X File number inside application
Response description
ACK 1 0x00
Command ID 1 0x78 | MFDF_DELETE_FILE
Example:

HOST=>C1l: 0x78
0x01

MFDF_DELETE_FILE
file number

C1=>HOST: 0x00 - ACK byte
0x78 - related command code MFDF_DELETE_FILE
10.4.26 Get free memory (0x79)

This command returns a value corresponding to the amount of free memory available on the TAG. No arguments are
required. The available memory is returned as a 4 byte unsigned LSB value.

Command description

Argument Size | Value | Description

Command ID 1 0x79 | MFDF_GET_FREE_MEM
Response description

ACK 1 0x00

Command ID 1 0x79 | MFDF_GET_FREE_MEM

Free memory 4 X Free memory, 4-bytes, LSB first

103

Eccel...."

Embedded RFID made simple

Example:

HOST=>C1l: 0x79 - MFDF_GET_FREE_MEM
C1=>HOST: 0x00 - ACK byte

0x79 - related command code MFDF_GET_FREE_MEM
0x00 0x08 0x00 0x00 - free memory

10.4.27 Format memory (Ox7A)

This command releases user memory in the TAG. No arguments are required.

Command description

Argument Size | Value | Description

Command ID 1 0x7A | MFDF_FORMAT
Response description

ACK 1 0x00

Command ID 1 0x7A | MFDF_FORMAT

Example:

HOST=>C1l: Ox7A - MFDF_FORMAT

C1l=>HOST: 0x00 - ACK byte
Ox7A - related command code MFDF_FORMAT

10.4.28 Commit transaction (Ox7B)

This command validates all previous write access on backup data files, value files and record files within one
application. No arguments are required.

Command description

Argument Size | Value | Description

Command ID 1 0x7B | MFDF_COMMIT_TRANSACTION
Response description

ACK 1 0x00

Command ID 1 0x7B | MFDF_COMMIT_TRANSACTION

Example:

HOST=>C1l: Ox7B - MFDF_COMMIT_TRANSACTION

C1=>HOST: 0x00 - ACK byte
0x7B - related command code MFDF_COMMIT_TRANSACTION

104

DN
Eccel.... -

Embedded RFID made simple Certificate No. GB2005225

10.4.29 Abort transaction (0x7C)

This command invalidates all previous write access on backup data files, value files and record files within one

application. No arguments are required.

Command description
Argument Size | Value | Description
Command ID 1 0x7C | MFDF_ABORT_TRANSACTION
Response description
ACK 1 0x00
Command ID 1 0x7C | MFDF_ABORT_TRANSACTION
Example:

HOST=>C1l: Ox7C - MFDF_ABORT_TRANSACTION

C1l=>HOST: 0x00 - ACK byte

10.4.30

0x7C - related command code MFDF_ABORT_TRANSACTION

Get file settings file (0x7D)

This command gets settings for the selected file. The format of the settings bytes depends on the file type.

Command description

Argument Size | Value | Description
Command ID 1 0x7D | MFDF_GET_FILE_SETTINGS
File number 1 X File number inside application
Response description
ACK 1 0x00
Command ID 1 0x7D | MFDF_GET_FILE_SETTINGS
0x00 — data file
0x01 — backup file
File type 1 X 0x02 — credit file
0x03 — record file
0x04 — cyclic file
Access rights 2 X Please refer to the NXP documentation for more information
Settings bytes
data file 3 3 bytes —file size, LSB first
4 bytes — lower limit, LSB first
value file 10 4 bytes — upper limit, LSB first
1 byte — get free enabled
1 byte — limited credit enabled
3 bytes — record size
record or cyclic files 9 3 bytes — max number of records
3 bytes — current number of records

105

N

il 2
1 1
[, J
cce 4
Technology Ltd -
Certficate

Embedded RFID made simple

MFDF_GET_FILE_SETTINGS

related command code MFDF_GET_FILE_SETTINGS
data file type

OXEE OXEE - access rights

0x20 0x00 0x00 - file size 32 bytes, LSB first

Example:
HOST=>Cl: Ox7D -
0x01 - file number
C1=>HOST: 0x00 - ACK byte
0Ox7D -
0x00 -
10.4.31 Set file settings (Ox7E)

This command sets new access rights for the selected file.

Command description

Argument Size | Value | Description
Command ID 1 Ox7E | MFDF_SET_FILE_SETTINGS
File number 1 X File number inside application
New access rights 2 X Please refer to the NXP documentation for more information
Response description
ACK 1 0x00
Command ID 1 Ox7E | MFDF_WRITE_DATA
Example:
HOST=>Cl: OX7E - MFDF_SET_FILE_SETTINGS
0x01 - file number
OXEE OXEE- new access rights bytes
C1=>HOST: 0x00 - ACK byte

OX7E - related command code MFDF_SET_FILE_SETTINGS

106

10.5 ICODE (ISO15693) commands

This set of commands should be performed on ICODE (1SO15693) TAGs.

10.5.1 Inventory start (0x90)

This command starts the inventory procedure on ISO 15693 TAGs. It activates the first TAG detected during collision
resolution. If no TAGs are detected, then an error with a timeout flag is returned. This command takes one argument
AFI - Application Family Identifier. Please refer to the NXP documentation for more information.

If any TAG(s) is/are detected, then the command returns an ACK message containing the UID (8-bytes), a DSFID byte,
and 1-byte which contains information about any other tags detected in the field that are available to be read.

Because GET_TAG_COUNT command is limited to 5 tags only, ICODE_INVENTORY_START/ICODE_INVENTORY_NEXT
commands should be used to detect all ICODE tags within range of the antenna.

Command description

Argument Size | Value | Description
Command ID 1 0x90 | ICODE_INVENTORY_START
AFI 1 X Application Family Identifier
Response description
ACK 1 0x00
Command ID 1 0x90 | ICODE_INVENTORY_START
(V] [») 8 XXX | Unique identifier, inverted order
DSFID 1 X Data Storage Format Identifier
More cards flag 1 X 0x00 — no more cards in range of antenna

0x01 — more cards in range of antenna

Example:

HOST=>C1l: 0x90 - ICODE_INVENTORY_START
0x00 - Application Family Identifier

C1=>HOST: 0x00 - ACK byte
0x90 - related command code ICODE_INVENTORY_START
0x04 Ox8F Ox7F Ox0A 0x01 O0x24 0Ox16 OxEO - UID
0x00 - DSFID
0x01 - more cards in range of antenna

10.5.2 Inventory next (0x91)

This command should be used to continue the inventory procedure on ISO 15693 TAGs. It activates the next TAG that
was detected during the collision resolution. It takes one argument, AFI - Application Family Identifier. Please refer to
the NXP documentation for more information. If a TAG or multiple tags is/are detected, then this command returns
an ACK message containing the UID (8-bytes), a DSFID byte, and 1-byte which contains information about any other
tags detected in the field that are available to be read.

107

Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 0x91 | ICODE_INVENTORY_NEXT
AFI 1 X Application Family Identifier
Response description
ACK 1 0x00
Command ID 1 0x91 | ICODE_INVENTORY_NEXT
uUID 8 XXX | Unique identifier
DSFID 1 X Data Storage Format Identifier
More cards flag 1 X 0x00 — no more car‘ds in range of antenna
0x01 — more cards in range of antenna
Example:

HOST=>C1l: 0x91
0x00

C1l=>HOST: 0x00 - ACK byte
0x91 - related command code ICODE_INVENTORY_NEXT
0x04 Ox8F Ox7F Ox0A 0x01 0x24 0Ox16 OxEO - UID
0x00 - DSFID
0x00 - no more cards available for reading

TICODE_INVENTORY_NEXT
Application Family Identifier

10.5.3 Stay quiet (0x92)

This command performs an ISO15693 Stay Quiet command to the selected TAG. When the tag receives the Stay quiet
command, it enters the quiet state and will not send back a response. The TAG exits the quiet state upon the execution
of a reset (power off) or the command ICODE_INVENTORY_START. Please refer to the NXP documentation for more
information.

Command description

Argument Size | Value | Description

Command ID 1 0x92 | ICODE_STAY_QUIET
Response description

ACK 1 0x00

Command ID 1 0x92 | ICODE_STAY_QUIET

Example:

HOST=>C1l: 0x92 - ICODE_STAY_QUIET

C1=>HOST: 0x00 - ACK byte
0x92 - related command code ICODE_STAY_QUIET

10.5.4 Read block (0x93)

The read block command should be used to read data stored in TAG blocks. It takes as arguments the block number of
the first block to be read, and the number of blocks to be read. The returned ACK answer contains data read from the

108

S
Eccel...."

Embedded RFID made simple

specified tag memory. The number of bytes of this data is ICODE block size (4) multiplied by the number of blocks to
be read.

Command description

Argument Size | Value | Description

Command ID 1 0x93 | ICODE_READ_BLOCK

Block number 1 X

Block count 1 N Number of block to read

Response description

ACK 1 0x00

Command ID 1 0x93 | ICODE_READ_BLOCK

Read data 4*N | XXX | Bytesread from the tag.
Example:

HOST=>C1l: 0x93
0x02
0x01

ICODE_READ_BLOCK
block number 2
1 block to read

C1l=>HOST: 0x00 - ACK byte
0x93 - related command code ICODE_READ_BLOCK
0x35 Ox3a 0x30 0x33 - 4 bytes block data

10.5.5 Write block (0x94)
The write block command should be used to write data to the tag. It takes as arguments the block number of the first

block to write, the number of blocks to write, and the bytes to be written. The number of bytes to be written must be
exactly the number of blocks to write multiplied by 4.

Command description

Argument Size | Value | Description

Command ID 1 0x94 | ICODE_WRITE_BLOCK

Block number 1 X

Block count 1 N

Data to write 4*N X 4-bytes data to write

Response description

ACK 1 0x00

Command ID 1 0x94 | ICODE_WRITE_BLOCK
Example:

HOST=>C1l: 0x94 ICODE_WRITE_BLOCK
0x02 - block number 2
0x01 - block count 1
0x35 0x3a 0x30 0x33 - 4 bytes to write

C1=>HOST: 0x00 - ACK byte
0x94 - related command code ICODE_WRITE_BLOCK

109

S
Eccel...."

Embedded RFID made simple

10.5.6 Lock block (0x95)

This command performs a lock block command. Once it receives the lock block command, the TAG permanently locks
the requested block. The command takes a one-byte argument representing the block number to be locked.

Command description

Argument Size | Value | Description
Command ID 1 0x95 | ICODE_LOCK_BLOCK
Block number 1 X
Response description
ACK 1 0x00
Command ID 1 0x95 | ICODE_LOCK_BLOCK
Example:

HOST=>C1l: 0x95
0x02

ICODE_LOCK_BLOCK
block number 2

Cl=>HOST: 0x00
0x95

ACK byte
related command code ICODE_LOCK_BLOCK

10.5.7 Write AFI (0x96)

This command performs a write to Application Family Identifier value inside the TAG memory. The command takes a
one-byte argument representing the AFl value.

Command description

Argument Size | Value | Description
Command ID 1 0x96 | ICODE_WRITE_AFI
AFl value 1 X
Response description

ACK 1 0x00
Command ID 1 0x96 | ICODE_WRITE_AFI
Example:

HOST=>C1l: 0x96 - ICODE_WRITE_AFI

OXAA - new Application Family Identifier value

Cl=>HOST: 0x00
0x96

ACK byte
related command code ICODE_WRITE_AFI

10.5.8 Lock AFI (0x97)

This command performs a Lock AFl command on the TAG. When it receives the lock AFl request, the TAG locks the
AFl value permanently into its memory.

110

N

Eccel....’
Command description
Argument Size | Value | Description
Command ID 1 0x97 | ICODE_LOCK_AFI
Response description
ACK 1 0x00
Command ID 1 0x97 | ICODE_LOCK_AFI
Example:

HOST=>C1l: 0x96 - ICODE_LOCK_AFI

C1=>HOST: 0x00 - ACK byte
0x96 - related command code ICODE_LOCK_AFI

10.5.9 Write DSFID (0x98)

This command performs a write to Data Storage Format Identifier value inside the TAG memory. This command takes
a one-byte argument representing the DSFID value.

Command description

Argument Size | Value | Description
Command ID 1 0x98 | ICODE_WRITE_DSFID
DSFID value 1 X

Response description
ACK 1 0x00
Command ID 1 0x98 | ICODE_WRITE_DSFID
Example:

HOST=>Cl: 0x98 - ICODE_WRITE_DSFID
OXAA - new Data Storage Format Identifier value

C1=>HOST: 0x00 - ACK byte
0x98 - related command code ICODE_WRITE_DSFID
10.5.10 Lock DSFID (0x99)

This command performs a Lock DSIFD command on the TAG. When it receives the lock DSFID request, the TAG locks
the DSFID value permanently into its memory.

Command description

Argument Size | Value | Description

Command ID 1 0x99 | ICODE_LOCK_DSFID
Response description

ACK 1 0x00

Command ID 1 0x99 | ICODE_LOCK_DSFID

111

S
Eccel...."

Embedded RFID made simple

Example:

HOST=>C1l: 0x99 - ICODE_LOCK_DSFID

C1=>HOST: 0x00 - ACK byte
0x99 - related command code ICODE_LOCK_DSFID

10.5.11 Get System Information (0x9A)

This command performs get system information command on the TAG. No arguments are required. The ACK response
contains bytes with system information. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 0x9A | ICODE_GET_SYSTEM_INFORMATION
Response description

ACK 1 0x00

Command ID 1 0x9A | ICODE_GET_SYSTEM_INFORMATION

System information X XXX | System information bytes

Example:

HOST=>C1l: Ox9A - ICODE_GET_SYSTEM_INFORMATION

Cl=>HOST: 0x00 - ACK byte
Ox9A - related command code ICODE_GET_SYSTEM_INFORMATION
OxOF 0x04 Ox8F Ox7F Ox0A Ox01 0x24
0x16 OxEO O0x00 Ox00 0x33 0x03 0x02 - result bytes

10.5.12 Get multiple BSS (0x9B)

This command performs get multiple block security status command on the TAG. It takes as arguments the block
number for which the status should be returned and the number of blocks to be used for returning the status. The ACK
response contains bytes with block security status information. Please refer to the NXP documentation for more
information.

Command description

Argument Size | Value | Description

Command ID 1 0x9B | ICODE_GET_MULTIPLE_BSS

First block number 1 X

Number of blocks 1 N

Response description

ACK 1 0x00

Command ID 1 0x9B | ICODE_GET_MULTIPLE_BSS

BSS information N X Blocks security status information
Example:

112

S
Eccel...."

Embedded RFID made simple

HOST=>C1: Ox9B
0x00
0x08

ICODE_GET_MULTIPLE_BSS
starting block number
number of BSS to read

C1=>HOST: 0x00 - ACK byte
0x9B - related command code ICODE_GET_MULTIPLE_BSS
0x00 0x00 0x00 Ox00 0x00 0x00 Ox00 Ox00 - result bytes

10.5.13 Password protect AFIl (0x9C)

This command enables the password protection for AFl. The AFl password has to be transmitted before with
ICODE_SET_PASSWORD command.

Command description

Argument Size | Value | Description

Command ID 1 0x9C | ICODE_PASSWORD_PROTECT_AFI
Response description

ACK 1 0x00

Command ID 1 0x9C | ICODE_PASSWORD_PROTECT_AFI

Example:

HOST=>C1l: 0x9C - ICODE_PASSWORD_PROTECT_AFI

C1l=>HOST: 0x00 - ACK byte
0x9C - related command code ICODE_PASSWORD_PROTECT_AFI

10.5.14 Read EPC (0x9D)

This command reads EPC data from the TAG. The ACK response contains 12-bytes of EPC data. Please refer to the NXP
documentation for more information.

Command description

Argument Size | Value | Description
Command ID 1 0x9D | ICODE_READ_EPC
Response description
ACK 1 0x00
Command ID 1 0x9D | ICODE_READ_EPC
EPC information 12 X Please refer to the NXP documentation for more information.
Example:

HOST=>C1: Ox9D - ICODE_READ_EPC
C1=>HOST: 0x00 - ACK byte

0x9D - related command code ICODE_READ_EPC
0x00 0x00 0x00 0x00 Ox00 0x00 0x00 0x00 - result bytes

113

S
Eccel...."

Embedded RFID made simple

10.5.15 Get NXP System Information (Ox9E)

This command retrieves the NXP system information value from the TAG. No arguments are required. The ACK
response contains bytes with the NXP system information. Please refer to the NXP documentation for more

information.

Command description

Argument Size | Value | Description

Command ID 1 Ox9E | ICODE_GET_NXP_SYSTEM_INFORMATION
Response description

ACK 1 0x00

Command ID 1 Ox9E | ICODE_GET_NXP_SYSTEM_INFORMATION

System information X XXX | System information bytes

Example:

HOST=>C1l: OX9E - ICODE_GET_NXP_SYSTEM_INFORMATION

C1=>HOST: 0x00 - ACK byte

Ox9E - related command code ICODE_GET_NXP_SYSTEM_INFORMATION

OxOF 0x04 Ox8F Ox7F 0Ox0A 0x01 Ox24

0x16 OxEO Ox00 0x00 0x33 0x03 0x02 - result bytes

10.5.16 Get random number (Ox9F)

This command requests a random number from the ICODE TAG. No arguments are required. The ACK response
contains a 16-bit random number. This value should be used with ICODE_SET_PASSWORD command.

Command description

Argument Size | Value | Description

Command ID 1 Ox9F | ICODE_GET_RANDOM_NUMBER
Response description

ACK 1 0x00

Command ID 1 Ox9F | ICODE_GET_RANDOM_NUMBER

Random number 2 XXX | 16-bits random number

Example:

Ox9F - ICODE_GET_RANDOM_NUMBER

Ox9F - related command code ICODE_GET_RANDOM_NUMBER

HOST=>C1:
C1=>HOST: 0x00 - ACK byte
Ox7F Ox14 - result bytes
10.5.17 Set password (OxAO)

This command sets the password for the selected identifier. This command has to be executed just once for the related
passwords if the TAG is powered. The password is calculated as XOR with the random number returned by the

previously executed command ICODE_GET_RANDOM_NUMBER.

114

D
Eccel....’

Embedded RFID made simple

Here is an example how to calculate XOR password:
xorPassword[0] = password[0] * rnd[0];
xorPassword[1] = password[1] A rnd[1];
xorPassword[2] = password[2] * rnd[0];
xorPassword[3] = password[3] A rnd[1];

Command description
Argument Size | Value | Description
Command ID 1 OxAO | ICODE_SET_PASSWORD
0x01 — Read password
0x02 — Write password
Password Identifier 1 X 0x04 — Privacy password
0x08 — Destroy password
0x10 - EAS/AFI password

XOR Password 4 X
Response description
ACK 1 0x00
Command ID 1 OxAO | ICODE_SET_PASSWORD
Example:

HOST=>C1l: OXAO - ICODE_SET_PASSWORD

0x02 - write password

0x34 0x76 0x39 0x64 - calculated XOR password
C1=>HOST: 0x00 - ACK byte

0xAO0 - related command code ICODE_SET_PASSWORD

10.5.18 Write password (OxA1)

This command writes a new password to a selected identifier. With this command, a new password is written into the
related memory. Note that the old password has to be transmitted before with ICODE_SET_PASSWORD. The new
password takes effect immediately which means that the new password has to be transmitted with
ICODE_SET_PASSWORD to get access to the protected blocks/pages. It takes as arguments the password identifier
byte and the plain password 4-bytes long.

Command description
Argument Size | Value | Description
Command ID 1 OxAl | ICODE_WRITE_PASSWORD
0x01 — Read password
0x02 — Write password
Password Identifier 1 X 0x04 — Privacy password
0x08 — Destroy password
0x10 - EAS/AFI password
Password 4 X Plain password
Response description

ACK 1 0x00
Command ID 1 OxAl | ICODE_WRITE_PASSWORD

115

S
Eccel...."

Embedded RFID made simple

Example:

HOST=>C1l: OxAl - ICODE_WRITE_PASSWORD
0x02 - write password
0x34 0x76 0x39 0x64 - Plain password

C1=>HOST: 0x00 - ACK byte

OxAl - related command code ICODE_WRITE_PASSWORD

10.5.19 Lock password (0xA2)

This command locks the addressed password. Note that the addressed password has to be transmitted before with

ICODE_SET_PASSWORD. A locked password can no longer be changed.

Command description

Argument Size | Value | Description

Command ID 1 0xA2 | ICODE_LOCK_PASSWORD

0x01 — Read password
0x02 — Write password
Password Identifier 1 X 0x04 — Privacy password
0x08 — Destroy password
0x10 - EAS/AFI password

Response description

ACK 1 0x00
Command ID 1 OxA2 | ICODE_LOCK_PASSWORD
Example:

HOST=>C1l: OxA2
0x02

ICODE_LOCK_PASSWORD
write password

C1=>HOST: 0x00 - ACK byte
OxA2 - related command code ICODE_LOCK_PASSWORD
10.5.20 Protect page (OxA3)

This command changes the protection status of a page. Note that the related passwords have to be transmitted before
with ICODE_SET PASSWORD if the page is not public. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 OxA3 | ICODE_PAGE_PROTECT

Page address

e Page number to be protected in case of products that do not have
pages characterized as high and Low.

e Block number to be protected in case of products that have pages
characterized as high and Low.

116

S
Eccel...."

Embedded RFID made simple

e Protection status options for the products that do not have pages

characterized as high and Low:

0x00: ICODE_PROTECT_PAGE_PUBLIC

0x01: ICODE_PROTECT _PAGE_READ_WRITE_READ_PASSWORD

0x10: ICODE_PROTECT_PAGE_WRITE_PASSWORD

Ox11: ICODE_PROTECT_PAGE_READ_WRITE_PASSWORD_SEPERATE
e Extended Protection status options for the products that have pages
characterized as high and Low:

0x01: ICODE_PROTECT_PAGE_READ_LOW

0x02: ICODE_PROTECT_PAGE_WRITE_LOW

0x10: ICODE_PROTECT_PAGE_READ_HIGH

0x20: ICODE_PROTECT_PAGE_WRITE_HIGH

Response description

Protection status 1 X

ACK 1 0x00
Command ID 1 OxA2 | ICODE_PAGE_PROTECT
Example:

HOST=>C1l: OxA3
0x02
0x01

ICODE_PAGE_PROTECT
second block selected
ICODE_PROTECT_PAGE_READ_LOW flag selected

C1l=>HOST: 0x00 - ACK byte
0xA3 - related command code ICODE_PAGE_PROTECT
10.5.21 Lock page protection (0xA4)

This command permanently locks the protection status of a page. Note that the related passwords have to be
transmitted before with ref ICODE_SET_PASSWORD if the page is not public.

Command description

Argument Size | Value | Description
Command ID 1 OxA4 | ICODE_LOCK_PAGE_PROTECTION
Page number 1 X

Response description
ACK 1 0x00
Command ID 1 OxA4 | ICODE_LOCK_PAGE_PROTECTION
Example:

HOST=>C1l: OxA4

ICODE_LOCK_PAGE_PROTECTION

0x02 - page number
C1=>HOST: 0x00 - ACK byte
0xA4 - related command code ICODE_LOCK_PAGE_PROTECTION

117

D
Eccel....

Embedded RFID made simple

10.5.22 Get multiple block protection status (OxA5)

This instructs the label to return the block protection status of the requested blocks. It takes as arguments the first
block number to get the block protection status and the number of blocks.

Command description

Argument Size | Value | Description

Command ID 1 OxA5 | ICODE_GET_MULTIPLE_BPS

First block number 1 X

Number of blocks 1 N

Response description

ACK 1 0x00

Command ID 1 OxA5 | ICODE_GET_MULTIPLE_BPS

BSS information N X Blocks protection status information
Example:

HOST=>C1l: OXxA5
0x00
0x08

ICODE_GET_MULTIPLE_BPS
starting block number
number of BSS to read

C1l=>HOST: 0x00 - ACK byte
OxA5 - related command code ICODE_GET_MULTIPLE_BPS
0x00 0x00 0x00 0x00 O0x00 0x00 0x00 0x00 - result bytes

10.5.23 Destroy (OxA6)

This command permanently destroys the label (tag). The destroy password has to be transmitted before with
ICODE_SET_PASSWORD. This command is irreversible and the label will never respond to any command again. This
command can take the XOR password argument for the ICODE products that requires this argument. The XOR
password calculation method is described in the ICODE_SET_PASSWORD description.

Command description

Argument Size | Value | Description
Command ID 1 OxA6 | ICODE_DESTROY
XOR password 4 X Optional XOR password
Response description
ACK 1 0x00
Command ID 1 O0xA6 | ICODE_DESTROY
Example:

HOST=>C1l: OxA6 - ICODE_DESTROY

C1=>HOST: 0x00 - ACK byte
OxA6 - related command code ICODE_DESTROY

118

D
Eccel....

9001
Embedded RFID made simple Cerificate No. GB200S225

10.5.24 Enable privacy (0xA7)

This command instructs the label to enter privacy mode. In privacy mode, the label will only respond to
ICODE_GET_RANDOM_NUMBER and ICODE_SET_PASSWORD commands. To get out of the privacy mode, the Privacy
password has to be transmitted before with ICODE_SET_PASSWORD.

Command description

Argument Size | Value | Description
Command ID 1 OxA7 | ICODE_ENABLE_PRIVACY
XOR password 4 X Optional XOR password
Response description
ACK 1 0x00
Command ID 1 OxA7 | ICODE_ENABLE_PRIVACY
Example:

HOST=>C1l: OxA7 - ICODE_ENABLE_PRIVACY

C1=>HOST: 0x00 - ACK byte
OxA7 - related command code ICODE_ENABLE_PRIVACY

10.5.25 Enable 64-bit password (0xA8)

This instructs the label that both Read and Write passwords are required for protected access. Note that both the
Read and Write passwords have to be transmitted before with ICODE_SET_PASSWORD.

Command description

Argument Size | Value | Description

Command ID 1 OxA8 | ICODE_ENABLE_64BIT_PASSWORD
Response description

ACK 1 0x00

Command ID 1 OxA8 | ICODE_ENABLE_64BIT_PASSWORD

Example:

HOST=>C1: OxA8 - ICODE_ENABLE_64BIT_PASSWORD

C1=>HOST: 0x00 - ACK byte
0xA8 - related command code ICODE_ENABLE_64BIT_PASSWORD

10.5.26 Read signature (OxA9)

This command reads the signature bytes from the TAG. No arguments are required. The ACK response contains bytes
containing the signature bytes. Please refer to the NXP documentation for more information.

Command description
Argument ‘ Size ‘ Value | Description

119

Eccel...."

Embedded RFID made simple

Command ID | 1 | oxA9 | ICODE_READ_SIGNATURE
Response description

ACK 1 0x00

Command ID 1 OxA9 | ICODE_READ_SIGNATURE

Signature bytes X XXX | Signature bytes

Example:

HOST=>C1l: OXA9 - ICODE_READ_SIGNATURE

C1=>HOST: 0x00 - ACK byte
0xA9 - related command code ICODE_READ_SIGNATURE
OxOF 0x04 Ox8F Ox7F 0Ox0A 0x01 Ox24
0x16 OxEO O0x00 0x00 0x33 0x03 0x02 - result bytes

10.5.27 Extended read block (0OxB3)

The extended read block command should be used to read data stored in TAG blocks but only if the tag supports this
command — if you are not sure please use ICODE_READ_BLOCK command. It takes as arguments the block number of
the first block to be read, and the number of blocks to be read. The returned ACK answer contains data read from the
specified tag memory. The number of bytes of this data is ICODE block size (4) multiplied by the number of blocks to
be read.

Command description

Argument Size | Value | Description
Command ID 1 0xB3 | ICODE_EXT_READ_BLOCK
Block number 2 X Unsigned 16bit value with LSB order.
Block count 1 N Number of block to read
Response description
ACK 1 0x00
Command ID 1 0xB3 | ICODE_EXT_READ_BLOCK
Read data 4*N | XXX | Bytesread from the tag.
Example:

HOST=>C1l: OxB3 - ICODE_EXT_READ_BLOCK
0x02 0x00 - block number 2
0x01 - 1 block to read

C1=>HOST: 0x00 - ACK byte

O0xB3 - related command code ICODE_EXT_READ_BLOCK
0x35 O0x3a 0x30 0x33 - 4 bytes block data

120

S
Eccel...."

Embedded RFID made simple

10.5.28 Extended write block (0xB4)

The extended write block command should be used to write data to the tag but only if the tag supports this command
—if you are not sure please use ICODE_WRITE_BLOCK command. It takes as arguments the block number of the first
block to write, the number of blocks to write, and the bytes to be written. The number of bytes to be written must be
exactly the number of blocks to write multiplied by 4.

Command description

Argument Size | Value | Description
Command ID 1 0xB4 | ICODE_EXT_WRITE_BLOCK
Block number 2 X Unsigned 16bit value with LSB order.
Block count 1 N
Data to write 4*N X 4-bytes data to write
Response description
ACK 1 0x00
Command ID 1 0xB4 | ICODE_EXT_WRITE_BLOCK
Example:

HOST=>C1l: OxB4 - ICODE_EXT_WRITE_BLOCK
0x02 0x00 - block number 2
0x01 - block count 1
0x35 0x3a 0x30 0x33 - 4 bytes to write

C1=>HOST: 0x00 - ACK byte
0xB4 - related command code ICODE_WRITE_BLOCK

10.5.29 Read config (OxAA)

This command reads multiple 4-byte data chunks from the selected configuration block address. It takes two
arguments, the first block number and the number of blocks to read the configuration data.

Command description

Argument Size | Value | Description
Command ID 1 OxAA | ICODE_READ_CONFIG
First block number 1 X
Number of blocks 1 N
Response description
ACK 1 0x00
Command ID 1 OxAA | ICODE_READ_CONFIG
Configuration bytes N*4 X
Example:

121

S
Eccel...."

Embedded RFID made simple

HOST=>C1l: OxAA
0x00
0x02

ICODE_READ_CONFIG
starting block number
number of blocks to read

C1=>HOST: 0x00 - ACK byte
OXAA - related command code ICODE_READ_CONFIG
0x00 0x00 0x00 Ox00 0x00 0x00 Ox00 Ox00 - result bytes

10.5.30 Write config (OxAB)

This command writes configuration bytes to addressed block data from the selected configuration block address. It
takes three arguments: the option byte, the block number and the configuration bytes. Please refer to the NXP
documentation for more information.

Command description
Argument Size | Value | Description
Command ID 1 OxAB | ICODE_WRITE_CONFIG

. 0x01 — Enable option

Geticplous ! X 0x00 — Disable option
Block number 1 X
Configuration bytes 4 X

Response description
ACK 1 0x00
Command ID 1 OxAB | ICODE_WRITE_CONFIG

Example:

HOST=>C1l: OXAB - ICODE_WRITE_CONFIG
0x01 - option byte
0x00 - block number
0x00 0x00 0x00 0x00 - config bytes
C1=>HOST: 0x00 - ACK byte
OXAB - related command code ICODE_WRITE_CONFIG

10.5.31 Pick random ID (OxAC)

This command enables the random ID generation in the tag. This interface is used to instruct the tag to generate
a random number in privacy mode. Please refer to the NXP documentation for more information.

Command description

Argument Size | Value | Description

Command ID 1 OxAC | ICODE_PICK_RANDOM_ID
Response description

ACK 1 0x00

Command ID 1 OxAC | ICODE_PICK_RANDOM_ID

Example:

122

\ ol =Dy
) %)
WY, J
cce 4
Technology Ltd -
Certficate

Embedded RFID made simple

HOST=>C1l: OXAB - ICODE_PICK_RANDOM_ID

C1=>HOST: 0x00 - ACK byte
OXAB - related command code ICODE_PICK_RANDOM_ID

10.5.32 ICODE custom command (15693) (OxBF)

From firmware version 2.51 onwards, the reader is capable to send custom commands over ISO 15693 protocol. The
device adds SOF, EOF, and CRC16 automatically so the host has to prepare only the content of the frame. The ACK
frame contains bytes received from the tag including response flags and all bytes except SOF, EOF, CRC16.

This command can be useful if you want to execute non-standard commands to tags like ST25. The first execution of
the command enables the RF field. It can be mixed with standard commands, so the host software can execute the
inventory command first and then send a custom command to do non-standard operations on the TAG.

Command description

Argument Size | Value | Description

Command ID 1 OxBF | ICODE_CUSTOM_COMMAND

DATA X X Custom data send to the TAG
Response description

ACK 1 0x00

Command ID 1 OxBF | ICODE_CUSTOM_COMMAND

ACK data X X Bytes received from the TAG

Example inventory command:

HOST=>Cl: OXBF - ICODE_CUSTOM_COMMAND
26 01 00 - inventory command bytes

C1=>HOST: 0x00 - ACK byte

OxBF - related command code ICODE_CUSTOM_COMMAND

00 00 OF BO 30 02 00 39 02 EO - tag response with response
flags bytes

10.6 OTA upgrade

The commands listed below can be used to perform an OTA upgrade. The latest OTA file is always available here:
http://eccel.co.uk/wp-content/downloads/Pepper C1/Pepper Cl.ver

10.6.1 OTA begin (OxFO)

This command must be executed to start the OTA upgrade process. The device responds with an ACK frame when the
command is finished.

123

http://eccel.co.uk/wp-content/downloads/Pepper_C1/Pepper_C1.ver

S
Eccel...."

Embedded RFID made simple

Command description

Argument Size | Value | Description
Command ID 1 O0xOF0 | OTA begin
Response description
ACK 1 0x00
Command ID 1 OxFO | OTA begin
Example:

HOST=>C1l: OxFO - OTA begin
Cl=>HOST: O0x00 - ACK byte

OxFO - related command code OTA begin
10.6.2 OTA firmware frame (OxF1)

When the OTA begin frame has already been executed, the host application can upload binary firmware file in chunks
that are 128 bytes long (the last frame may be smaller).

Command description

Argument Size | Value | Description

Command ID 1 OxOF1 | OTA frame

Firmware bytes I\f;)s(Firmware bytes in chunks 128bytes long.
Response description

ACK 1 0x00

Command ID 1 OxF1 | OTA frame

Example:

HOST=>C1l: OxFl - OTA frame
0x34 0x67 .. 0x45 - firmware bytes

C1=>HOST: O0x00 - ACK byte
OxXF1l - related command code OTA frame

10.6.3 OTA finish (OxF2)
The command must be executed after all firmware frames are written to the device. The bootloader application checks

the integrity of the application. After this step the host can send the REBOOT command to reboot the device and run
the new firmware. If there is a problem with communication after a device upgrade, please perform a factory reset.

Command description

Argument Size | Value | Description
Command ID 1 O0xO0F2 | OTA finish
Response description
ACK 1 0x00
Command ID 1 O0xF2 | OTA finish
Example:

124

Eccel... %2

Embedded RFID made simple

HOST=>C1l: OxF4 - OTA finish

Cl=>HOST: O0x00 - ACK byte
OxF4 - related command code OTA finish

125

D &
Eccel.... .

Embedded RFID made simple

11. Revision history

Revision | Date Changes

1.0 2-Apr-2024 First release after splitting software and hardware description
1.1 5-Jun-2024 New command ICODE_CUSTOM_COMMAND

1.2 11-Jun-2024 | Network configuration section description update

GPI10 command (OxOE) description update
New parameters for Custom text in polling setup (tag type and SAK/DSFID)

1.3 09-Jul-2024 WPAN sections updated

14 18-Sep-24 Updated description about JSON parser for MQTT and Websocket
Sleep command updated
New feature “Known tags on all antennas” described in section 9.1.6

1.5 02-Dec-2024 | Sleep configuration command added, light sleep mode added, and LPCD functionality

MIFARE, MIFARE Ultralight, MIFARE Plus, MIFARE Classic, and MIFARE DESFire are trademarks of NXP B.V.

No responsibility is taken for the method of integration or final use of the Pepper C1 readers.

More information about the Pepper C1 family and other products can be found at the Internet site:

http://www.eccel.co.uk

or alternatively contact ECCEL Technology (IB Technology) by e-mail at:

sales@eccel.co.uk

126

	1. Configuration – Web Interface
	1.1 Network Configuration
	1.1.1 Wi-Fi Access Point mode
	1.1.2 Wi-Fi Client mode
	1.1.3 Disabling wireless communication

	1.2 RFID
	1.3 Communication interfaces
	1.3.1 General configuration
	1.3.2 UART configuration
	1.3.3 TCP Client/Server
	1.3.4 2.4GHz wireless communication (WPAN)
	1.3.5 MQTT
	1.3.6 REST API interface
	1.3.7 Web sockets

	1.4 Miscellaneous options
	1.5 Status
	1.6 Firmware upgrade
	1.7 Backup & Restore

	2. Rescue mode and factory reset
	2.1 Rescue mode
	2.2 Automatic rescue mode
	2.3 Resetting module to factory defaults

	3. Sleep mode
	4. JSON interface for MQTT and WebSocket protocols
	4.1 Status frame
	4.2 RFID frame
	4.3 UART passthru frame
	4.4 Event frame
	4.4.1 Set GPIO high/low
	4.4.2 Toggle GPIO high/low
	4.4.3 UART passthru event
	4.4.4 LED event
	4.4.5 Read tag command
	4.4.6 Write tag command

	5. Communication interface – binary interface
	5.1 Overview
	5.2 Frame structure
	5.3 CRC calculation
	5.4 Pepper C1 Client – PC application

	6. WPAN interface
	6.1 WPAN Serial Port Profile
	6.2 WPAN Low Energy GATT service
	6.2.1 WPAN Low Energy GATT as an additional interface

	6.3 WPAN LE HID profile
	6.4 WPAN bridge extension

	7. RS-485 Communication
	7.1 Modbus RTU
	7.2 Binary protocol over RS-485

	8. Key storage
	9. Polling mode
	9.1 Web configuration for polling mode
	9.1.1 Supported technologies
	9.1.2 RFID power settings
	9.1.3 Polling loop settings
	9.1.4 Read memory settings
	9.1.5 Polling events
	9.1.6 Extra settings for MUX device

	9.2 Known UID list

	10. Commands list
	10.1 Generic commands
	10.1.1 Acknowledge frame (0x00)
	10.1.2 Error response (0xFF)
	10.1.3 Dummy command (0x01)
	10.1.4 Get tag count (0x02)
	10.1.5 Get tag UID (0x03)
	10.1.6 Activate TAG (0x04)
	10.1.7 Halt (0x05)
	10.1.8 Set polling (0x06)
	10.1.9 Set key (0x07)
	10.1.10 Save keys (0x08)
	10.1.11 Network config (0x09)
	10.1.11.1 Setting Wi-Fi mode
	10.1.11.2 Wi-Fi authorization mode
	10.1.11.3 Wi-Fi channel
	10.1.11.4 Wi-Fi network SSID
	10.1.11.5 Wi-Fi network password
	10.1.11.6 Network IP address mode
	10.1.11.7 Network IP addresses
	10.1.11.8 Web Interface user name and password (0x09)

	10.1.12 Reboot (0x0A)
	10.1.13 Get version (0x0B)
	10.1.14 UART passthru (0x0C)
	10.1.15 Sleep command (0x0D)
	10.1.16 GPIO command (0x0E)
	10.1.17 Set active antenna (0x0F) – Pepper C1 MUX only
	10.1.18 WPAN pin command (0x10)
	10.1.19 Factory reset command (0x11)
	10.1.20 Protocol authorization (0x12)
	10.1.21 Protocol configuration (0x13)
	10.1.21.1 General settings
	10.1.21.2 UART settings
	10.1.21.3 TCP server settings
	10.1.21.4 TCP client settings
	10.1.21.5 WPAN settings
	10.1.21.6 MQTT client settings
	10.1.21.7 REST API settings
	10.1.21.8 Web socket settings

	10.1.22 LED command (0x14)
	10.1.23 WPAN data command(0x15)
	10.1.24 Polling setup (0x16)
	10.1.24.1 Supported technologies (0x00)
	10.1.24.2 RFID power (0x01)
	10.1.24.3 Internal polling control (0x02)
	10.1.24.4 Polling timeout (0x03)
	10.1.24.5 Ignore timeout (0x04)
	10.1.24.6 Polling antennas (0x05) - MUX only
	10.1.24.7 Polling event packet (0x06)
	10.1.24.8 Polling LED event (0x07)
	10.1.24.9 Polling GPIO event (0x08)
	10.1.24.10 Event duration (0x09)
	10.1.24.11 Polling event custom text format (0x0A)
	10.1.24.12 Known tags on all antennas (0x0B)

	10.1.25 Sleep setup (0x17)
	10.1.25.1 Use light sleep (0x00)
	10.1.25.2 Get tag command on boot (0x01)
	10.1.25.3 No tag in range timeout (0x02)
	10.1.25.4 Enter sleep mode when tag is detected (0x03)
	10.1.25.5 Use LPCD in light sleep (0x04)
	10.1.25.6 LPCD polling timeout (0x05)
	10.1.25.7 Wake up timer (0x06)
	10.1.25.8 Wake up triggers (0x07)

	10.1.26 LOG forwarding (0xE4)

	10.2 MIFARE Classics commands
	10.2.1 Read block (0x20)
	10.2.2 Write block (0x21)
	10.2.3 Read value (0x22)
	10.2.4 Write value (0x23)
	10.2.5 Increment/decrement value (0x24)
	10.2.6 Transfer value (0x25)
	10.2.7 Restore value (0x26)
	10.2.8 Transfer-Restore value (0x27)

	10.3 MIFARE Ultralight commands
	10.3.1 Read page (0x40)
	10.3.2 Write page (0x41)
	10.3.3 Get version (0x42)
	10.3.4 Read signature (0x43)
	10.3.5 Write signature (0x44)
	10.3.6 Lock signature (0x45)
	10.3.7 Read counter (0x46)
	10.3.8 Increment counter (0x47)
	10.3.9 Password auth (0x48)
	10.3.10 Ultralight-C authenticate (0x49)
	10.3.11 Check Tearing Event (0x4A)

	10.4 MIFARE DESFire commands
	10.4.1 Get version (0x60)
	10.4.2 Select application (0x61)
	10.4.3 List application IDs (0x62)
	10.4.4 List files IDs (0x63)
	10.4.5 Authenticate (0x64)
	10.4.6 Authenticate ISO (0x65)
	10.4.7 Authenticate AES (0x66)
	10.4.8 Create application (0x67)
	10.4.9 Delete application (0x68)
	10.4.10 Change key (0x69)
	10.4.11 Get key settings (0x6A)
	10.4.12 Change key settings (0x6B)
	10.4.13 Create standard or backup data file (0x6C)
	10.4.14 Write data (0x6D)
	10.4.15 Read data (0x6E)
	10.4.16 Create value file (0x6F)
	10.4.17 Get value (0x70)
	10.4.18 Credit file (0x71)
	10.4.19 Limited credit file (0x72)
	10.4.20 Debit file (0x73)
	10.4.21 Create record file (0x74)
	10.4.22 Write record (0x75)
	10.4.23 Read record (0x76)
	10.4.24 Clear records (0x77)
	10.4.25 Delete file (0x78)
	10.4.26 Get free memory (0x79)
	10.4.27 Format memory (0x7A)
	10.4.28 Commit transaction (0x7B)
	10.4.29 Abort transaction (0x7C)
	10.4.30 Get file settings file (0x7D)
	10.4.31 Set file settings (0x7E)

	10.5 ICODE (ISO15693) commands
	10.5.1 Inventory start (0x90)
	10.5.2 Inventory next (0x91)
	10.5.3 Stay quiet (0x92)
	10.5.4 Read block (0x93)
	10.5.5 Write block (0x94)
	10.5.6 Lock block (0x95)
	10.5.7 Write AFI (0x96)
	10.5.8 Lock AFI (0x97)
	10.5.9 Write DSFID (0x98)
	10.5.10 Lock DSFID (0x99)
	10.5.11 Get System Information (0x9A)
	10.5.12 Get multiple BSS (0x9B)
	10.5.13 Password protect AFI (0x9C)
	10.5.14 Read EPC (0x9D)
	10.5.15 Get NXP System Information (0x9E)
	10.5.16 Get random number (0x9F)
	10.5.17 Set password (0xA0)
	10.5.18 Write password (0xA1)
	10.5.19 Lock password (0xA2)
	10.5.20 Protect page (0xA3)
	10.5.21 Lock page protection (0xA4)
	10.5.22 Get multiple block protection status (0xA5)
	10.5.23 Destroy (0xA6)
	10.5.24 Enable privacy (0xA7)
	10.5.25 Enable 64-bit password (0xA8)
	10.5.26 Read signature (0xA9)
	10.5.27 Extended read block (0xB3)
	10.5.28 Extended write block (0xB4)
	10.5.29 Read config (0xAA)
	10.5.30 Write config (0xAB)
	10.5.31 Pick random ID (0xAC)
	10.5.32 ICODE custom command (15693) (0xBF)

	10.6 OTA upgrade
	10.6.1 OTA begin (0xF0)
	10.6.2 OTA firmware frame (0xF1)
	10.6.3 OTA finish (0xF2)

	11. Revision history

